
EALink: An Efficient and Accurate Pre-trained
Framework for Issue-Commit Link Recovery

Chenyuan Zhang1, Yanlin Wang2, Zhao Wei3, Yong Xu3, Juhong Wang3, Hui Li1* and Rongrong Ji1
1Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China

School of Informatics, Xiamen University, China
2School of Software Engineering, Sun Yat-sen University, China

3Tencent, China
zhangchenyuan@stu.xmu.edu.cn, wangylin36@mail.sysu.edu.cn,

{zachwei, rogerxu, julietwang}@tencent.com, {hui, rrji}@xmu.edu.cn

Abstract—Issue-commit links, as a type of software traceability
links, play a vital role in various software development and main-
tenance tasks. However, they are typically deficient, as developers
often forget or fail to create tags when making commits. Existing
studies have deployed deep learning techniques, including pre-
trained models, to improve automatic issue-commit link recovery.
Despite their promising performance, we argue that previous
approaches have four main problems, hindering them from re-
covering links in large software projects. To overcome these prob-
lems, we propose an efficient and accurate pre-trained framework
called EALink for issue-commit link recovery. EALink requires
much fewer model parameters than existing pre-trained methods,
bringing efficient training and recovery. Moreover, we design var-
ious techniques to improve the recovery accuracy of EALink. We
construct a large-scale dataset and conduct extensive experiments
to demonstrate the power of EALink. Results show that EALink
outperforms the state-of-the-art methods by a large margin
(15.23%-408.65%) on various evaluation metrics. Meanwhile, its
training and inference overhead is orders of magnitude lower
than existing methods. We provide our implementation and data
at https://github.com/KDEGroup/EALink.

Index Terms—issue-commit link recovery, software traceability

I. INTRODUCTION

Software traceability links maintain associations between di-
verse artifacts (e.g., requirements, design and source code) [1]
and support various software development and maintenance
tasks, e.g., software change impact analysis [2], identifying
vulnerability-fixing commits [3], selective regression test-
ing [4] and project management [5]. Unfortunately, the main-
tenance of software traceability links typically relies on the
labor-intensive manual work of developers, leading to incom-
plete, inaccurate and even conflicting traceability links [6].
Hence, the deficient software traceability links increase the
cost of software development and maintenance.

In this paper, we focus on recovering software traceability
links among related issues and commits in software reposito-
ries, i.e., issue-commit link recovery. Issues summarize user’s
discussions around required changes of the software in the
form of documentation, while commits contain the change
itself with a commit message using natural language text [7].
With the ubiquitous adoption of version control systems and

*Corresponding author.

Issue
Title

Issue
Description

Commit
Message

Code
Change
Set

Issue

Commits

Fig. 1: An example of an one-to-many issue-commit link.

platforms such as Git and GitHub, and issue tracking systems
such as Jira and Bugzilla, developers can tag commits with
corresponding issues as they perform daily software develop-
ment and maintenance tasks [8]. An issue is commonly fixed
by one or more commits [9]. Fig. 1 shows the data format of an
issue-commit link with two commits are linked to the issue via
the issue tag [CALCITE-2299], we explain details of the data
collection process in Sec. III. The traceability links between
issues and commits play a vital role in software development
and maintenance activities (e.g., commit analysis [10] and bug
prediction [11]). Nevertheless, issue-commit links suffer from
the same issue as other software traceability links: links are
typically deficient as developers often forget or fail to create
tags when making commits [12].

To alleviate the scarcity of issue-commit links, various
automatic issue-commit link recovery methods are proposed.
Early approaches adopt feature-based and rule-based meth-
ods [11], [13], [14] which heavily rely on feature engineering
and manual rules. They show low precision and are hard
to generalize. Traditional learning based approaches [7]–[9],
[15], [16] leverage machine learning to automatically learn
from features and alleviate the reliance on manual rules.
More recently, researchers are inspired by the success of
deep learning in various applications and adopt deep neural
networks to enhance issue-commit link recovery [10], [17],

...
Data

Collection

6 Projects
(Initial Dataset)

......
Issues

......
CommitsCommits

Raw Dataset

Crawl Data

Data
Preparation

...Issue-commit
Links

Issue-code
Links

...

27 Features
Issue Title, Issue Description, Commit Message, Code
Change Data, Issue Type, Issue Status, Author
Information…

Our Dataset (Final Dataset)

Data Preprocessing Feature Extraction

Issue-commit Link
Generation

Issue-code Link
Generation

Data Preprocessing Feature Extraction

Issue-commit Link
Generation

Issue-code Link
Generation

Data Construction (Sec. 3)
Distillation

...

Maximize
Similarity

Minimize
Similarity

.........

Maximize
Similarity

Minimize
Similarity

...
cl

Inter-commit
Correlation
Modeling...

Maximize
Similarity

Minimize
Similarity

...
cl

Inter-commit
Correlation
Modeling

EALink (Sec. 4)

...
Teacher

...
Teacher

Student

Layer

Layer

Student

Layer

Layer

kd

Cosine
Similarity

Cosine
Similarity main

Cosine
Similarity main

Issue-commit
Link Recovery

Cosine
Similarity main

Issue-commit
Link Recovery

Dissimilar False Link

False Link Generation

Dissimilar False Link

False Link Generation
Binary

Classifier

Distinction between
Commit Code

Binary
Classifier

Distinction between
Commit Code

aux

Binary
Classifier

Distinction between
Commit Code

aux

...Changed CodeChanged Code

Fig. 2: Overview of this work. Orange arrows indicate the relationship among different parts in EALink.

[18]. Deep learning methods encode code and textual data
into separate spaces for modeling programming language (PL)
and natural language (NL) in order to overcome the semantic
gap [19], [20] between different software artifacts. Moreover,
they can leverage pre-training techniques and pre-train the
model on related software engineering tasks and code corpora
so that the issue-commit link recovery task can benefit from
large-scale code data and supervision beyond issue-commit
link data [18].

Although much effort has been devoted to interlinking
issues and commits, we find that there still exist problems:

1) P1: High Training and Inference Overhead: De-
spite the success of deploying pre-trained models (e.g.,
BERT [21]) in issue-commit recovery [18], the perfor-
mance improvement comes at the cost of much more
model parameters and longer training and inference time,
hindering their use in large-scale software projects. For
example, T-BERT [18] takes 44,353 seconds for 1,000
recovery queries on a moderate-size dataset in our exper-
iments.

2) P2: Neglect of Inter-commit Correlation: In practice,
multiple commits may correspond to the same issue.
Prior methods mostly model links between an issue
and each corresponding commit, neglecting correlations
among commits in a one-to-many issue-commit link (i.e.,
inter-commit correlation).

3) P3: Nondistinctive Modeling of Changed Code in One
Commit: Existing approaches treat all changed code files
in a commit equally. However, this is not reasonable in
practice. Analysis on code repositories demonstrates that
changes for different purposes can be submitted together

in a single commit [16]. Inappropriately modeling loosely
related and unrelated code changes introduces noise,
jeopardizing learning quality.

4) P4: Conflicting False Links: Many deep learning based
recovery approaches are trained via separating true links
and false links. True links that correctly connect issues to
their related commits can be extracted from tags provided
on GitHub, Jira and Bugzilla. To construct inexistent false
links that interlink issues and unrelated commits, existing
methods adopt a sampling method based on the time
interval. However, such a method may generate false links
that are actually true links. See Sec. II for details.

We provide motivating examples for each problem in Sec. II.
To tackle the above problems, we propose an Efficient and
Accurate Pre-trained framework for issue-commit Link recov-
ery (EALink). Fig. 2 provides an overview of this work and
our contributions are:

• To reduce the overhead brought by large model size
(P1), EALink distills knowledge from a pre-trained NL-
PL model (e.g., CodeBERT [22]) to construct a compact
model. The distilled model can capture the semantic
connections between NL and PL, which is essential to
model issues and commits. Meanwhile, it is easier to
fine-tune the compact model on the issue-link recovery
task since it contains fewer parameters and requires much
shorter training and inference time.

• To model inter-commit correlation (P2), EALink employs
contrastive learning [23]. And inter-commit correlation is
captured by contrasting positive commits (from the same
one-to-many issue-commit link) and negative commits
(from different issue-commit links).

• To provide a fine-grained distinction between data of
changed code files (P3), we design an auxiliary task
issue-code link prediction to help distinguish the impor-
tance of each commit code. The task is jointly trained
with the issue-commit link recovery task in a manner of
multi-task learning.

• To avoid conflicting false links (P4), we propose a false
link generation mechanism for constructing reasonable
false links used for training EALink.

• To fairly evaluate EALink and existing works on large-
size projects, we construct a new, large dataset for the
issue-commit link recovery task (it also contains issue-
code links for our designed auxiliary task). Extensive
experiments demonstrate that EALink recovers issue-
commit links more efficiently and accurately than state-
of-the-art baselines on large projects.

II. MOTIVATING EXAMPLES

In this section, we provide detailed motivating examples to
illustrate the four problems mentioned in Sec. I.

Example for P1 (High Training and Inference Overhead):
Recent deep learning based issue-link recovery models show
promising performance [10], [18] as they can better capture
textual features, code features and their mutual relations via
deep neural networks. However, the strong expressive power of
deep neural networks, especially pre-trained models [21], [24],
comes at the cost of requiring many more model parameters
and longer training/inference time than traditional methods.
For instance, deep learning based method DeepLink [10] and
pre-training based method T-BERT [18] take 1,145 seconds
and 44,353 seconds for inference on Isis, a moderate-size
project in our constructed dataset. And T-BERT requires about
138 hours for pre-training using our hardware environment.
The high training and inference cost of deep learning based
recovery methods limits their use in processing large software
projects.

Example for P2 (Neglect of Inter-Commit Correlation): In
a software project, developers may make multiple commits for
fixing an issue, forming one-to-many issue-commit links. One-
to-many links are ubiquitous. Fig. 3 demonstrates the statistics
of one-to-one and one-to-many links in the 6 projects in our
constructed data (Sec. III). We can observe that all the 6 soft-
ware projects have roughly similar numbers of one-to-one and
one-to-many links. Multiple commits in a one-to-many link
may be correlative. In the example of Fig. 1, the two commits
together fix the issue [CALCITE-2299]. However, existing
works will model the two commits separately, ignoring that
they are related to each other.

Example for P3 (Nondistinctive Modeling of Changed
Code in One Commit): Commits often contain changed code
located in different source code files and some of them are
loosely related or even unrelated to the issue. Fig. 4 depicts
a commit for the issue [CALCITE-1094]. The changes of the
source code file “UnsynchronizedBuffer.java” is relevant to

calcite groovy ignite isis netbeans ambari
project

0

2000

4000

6000

8000

10000

nu
m

be
r

1025 1122

3038

754 472

11034

935

2601
2064

827
159

9981one-to-one
one-to-many

Fig. 3: Statistics of one-to-one and one-to-many links.

Issue: CALCITE-1094Issue: CALCITE-1094

Commit: 1d3a26dfac1...

Title:

Description:

Log Message:

Modified files:
 src.../AvaticaJsonHandler.java
 src.../UnsynchronizedBuffer.java
 src.../AvaticaUtils.java
 src.../ProtobufSerializationTest.java

Fig. 4: Loosely related or unrelated code in a commit.

[CALCITE-1094], while the changes of “ProtobufSerializa-
tionTest.java” implement a test program and they are loosely
related or unrelated to [CALCITE-1094]. Loosely related or
unrelated source code files introduce noise to issue-commit
link recovery. Noise hinders recovery model from capturing
critical information. Most existing approaches do not take
special actions to handle loosely related or unrelated source
code file data. A few works [16] filter changed code that does
not share many terms with issues to avoid noise. But their
methods rely on keyword matching that is inappropriate for
solving this problem: a) Commits (code) and issues (title and
description) are in different modalities (NL and PL) that do not
share the same vocabulary; b) Commits and issues may contain
relevant but not exactly matching terms and using keyword
matching will filter such useful, related code snippets.

Example for P4 (Conflicting False Links): Previous works
generate false links by sampling commits submitted 7 days be-
fore or after one of the three dates (creation/updated/resolved
dates) of an issue and connect the sampled commits to the
issue as false links [10], [13], [16], [25]. However, in practice,
many factors including active developers and simple issues
make it possible that some commits are submitted shortly after
the creation of the issue. For instance, the issue [CALCITE-

TABLE I: Statistics of our constructed final dataset.

Project #Issues #Commits #True Issue-
commit Links

#True Issue-
code Links

Ambari 25,162 38,872 35,597 52,530
Calcite 3,740 6,934 3,058 7,910
Groovy 9,118 30,633 8,851 9,208
Ignite 12,495 32,930 9,997 17,747
Isis 2,264 15,284 8,486 27,127

Netbeans 3,705 19,181 1,369 4,662

1700] has a commit1 submitted within 7 days after the creation
of [CALCITE-1700]. Therefore, unlabeled true links may be
wrongly sampled as false links using time interval based
sampling method adopted by previous works.

III. DATASET CONSTRUCTION

Existing works adopt small datasets for evaluation. For
example, Lin et al. [18] uses three software projects with
hundreds of issues, commits and links in the evaluation.
However, the effectiveness and efficiency of recovery models
cannot be fully evaluated on small-scale data.

Hence, we constructed a large issue-commit link dataset
based on 6 Java projects to evaluate link recovery methods.
The data for each project contains true links ranging from one
thousand three hundred to thirty five thousand. Moreover, it
includes 27 non-text and text features. Tab. I depicts our con-
structed final dataset and Tab. II provides detailed descriptions
of the 27 features. Note that not all the features are used in
this study. Unused features could be helpful for future studies
on issue-commit link recovery.

This section shows the steps of dataset construction which
are depicted in the left of Fig. 2. For the purpose of illustration,
in the following sections, a link refers to a one-to-one issue-
commit link and a one-to-many issue-commit link is broken
into multiple one-to-one issue-commit links.

A. Data Collection

Claes et al. [26] present a dataset containing common issue
and commit information (i.e., issue title, issue descriptions,
issue comments, commit messages and meta-information of
changed source code files) on 765 projects across 20 years.
However, it lacks information of code change data and source
code file data in commits. We selected 6 Apache projects from
their dataset based on project popularity (i.e., the number of
stars and forks) as the initial dataset. After that, we crawled
code change data and source code data based on the meta-
information of changed source code files that contains urls
of code data. The crawled code data was added to the initial
dataset as a supplement to form the raw dataset.

B. Data Preparation

We prepared the final dataset by conducting four operations
on the raw dataset: data preprocessing, feature extraction, true
issue-commit link generation and issue-code link generation.

1https://github.com/apache/calcite/commit/
8bac70e5020c50505b34df6eaae18c0ca414f2c2

TABLE II: Descriptions of 27 features in final dataset.

Feature Description

source Describe which platform or system the
project originates from (e.g., apache).

product Project name (e.g. Netbeans).

issue id ID number corresponding to an issue
(e.g., 13226408).

component The component type that the project belongs
to (e.g., engine).

creator key A hash value that uniquely identifies
the issue (e.g., 7860ba1e91f42c...).

create date The creation time of the issue
(e.g., 2018-03-13 09:06:55+00:00).

update date The last update time of the issue.
last resolved date The last resolved time of the issue.

comment Discussion on the issue.
summary Summary of the issue.

description The specific content of the issue.

issue type The type of the issue
(e.g., bug/improvement/new feature).

status The status of the issue
(e.g., open/close/resolved).

repo The name of the project that the commit
belongs to.

commitid A hash value that uniquely identifies
the commit.

parents The hash value of the lasted submission.
author Hash for the author of commit.

committer The hash of the person who made
the commit.

author time date The time when the author submitted
the commit.

commit time date The time when the committer submitted
the commit.

message Summary of the content of the commit.

commit issue id If the commit has been marked, the
value of commit issue id is the issue id.

changed files The path of the changed file.
Diff Code diff.

codelist List of source code files.
nonsource Content of changed non-source code files.

label Its value is 1 if it corresponds to a true
link, otherwise 0.

1) Data Preprocessing: The raw dataset contains informa-
tion (e.g, issue description) created by different developers
with diverse development conventions. Hence, different text
styles and programming styles are manifested in the raw
dataset, bringing noise. To improve data quality, we adopted
several strategies to preprocess textual and code data contained
in the raw dataset.

Text Preprocessing: The textual data in the raw dataset
contains issue title, issue description and commit message.
We first performed several common NLP preprocessing strate-
gies including lowercase conversion, tokenization, stop word
removal and stemming [27] on textual data. They not only
reduced the size of the token vocabulary, thus allowing for
a compact feature set, but also integrated different forms of
words by replacing them with root words. Then, following
DeepLink [10], we removed hyperlinks and issue tags from
textual data. Hyperlinks were removed since they are typically
not viewed as textual data. Issue tags were removed since

https://github.com/apache/calcite/commit/8bac70e5020c50505b34df6eaae18c0ca414f2c2
https://github.com/apache/calcite/commit/8bac70e5020c50505b34df6eaae18c0ca414f2c2

all commit messages in some project repositories2 contain
issue tags (e.g., the commit message in Fig. 1). Since issue
tags can be directly used to find true links (see Sec. III-B3),
we removed them to avoid data leakage and increase the
difficulty of issue-commit link recovery. We also identified
inline code and large code blocks from textual data using
regular expressions. Identified issue code was removed from
textual data but was included as features in the final dataset
(see Sec. III-B2).

Code Preprocessing: We first extracted identifier names (e.g.,
class names, method names and variable names) from code
data. Moreover, for source code data, since it contains the
complete function body, we used tree-sitter3 to convert it to
Abstract Syntax Tree (AST) and extract identifier names from
node tokens. For code change data, we used the patterns (i.e.,
regular expressions) proposed by Nguyen et al. [13] and Sun
et al. [16] to extract identifier names. Then, the extracted
identifier names were split into tokens according to their
patterns. Finally, all code data was converted to lowercase.

2) Feature Extraction: The features extracted and used by
EALink are issue title, issue description, commit message,
code change and changed source code files in each commit.
Note that this paper mainly focuses on the model design
for the link-commit issue recovery task and EALink only
considers the above five features. We additionally extracted
many other textual and non-textual features (e.g., issue status
and updated date) and included them in the final dataset
since some issue-commit link recovery approaches require
additional features. For instance, DeepLink [10] requires issue
code which includes code tokens in issue descriptions. KG-
DeepLink [17] uses a feature vector including issue type, issue
priority, issue reporter, issue assignee, issue created time, issue
resolved time, commit time and committer. In total, our final
dataset contains 27 features and these features can be useful
to future study of link-commit issue recovery.

3) True Issue-Commit Link Generation: If a commit is
marked with an issue tag, we labeled it together with the cor-
responding issue as a true link and added to the final dataset.
False links were generated during training (see Sec. IV-E).

4) Issue-Code Link Generation: EALink is also trained on
the auxiliary task issue-code link prediction which will be
described in Sec. IV-D. To prepare the data for the auxiliary
task, for each true issue-commit link, we simply checked
whether the file name of each changed source code file ap-
peared in issue title or issue description. If so, we constructed
an issue-code link between the changed source code file and
the corresponding issue, and added it to the final dataset.

IV. OUR FRAMEWORK EALINK

A. Overview

The right part of Fig. 2 depicts EALink which contains
two steps. In the first step, EALink distills knowledge of a
large teacher model to construct a compact student model

2The Calcite repository is one example: https://github.com/apache/calcite.
3https://github.com/tree-sitter/tree-sitter

(Sec. IV-B). In the second step, EALink fine-tunes the
lightweight student model for the task of issue-commit link
recovery. Specifically, during fine-tuning, EALink is trained
to capture inter-commit correlation via contrastive learning
(Sec. IV-C), and distinguish the varying importance of differ-
ent commit code through the auxiliary task of issue-code link
prediction (Sec. IV-D). In fine-tuning, EALink is optimized
in a manner of multi-task learning and we propose a false
link generation approach to prepare the links for training
(Sec. IV-E).

Model Input: The input to the first step (distillation) is a
code pre-trained model. The input to the second step (fine-
tuning) includes issue text (i.e., the concatenation of the title
and description of the issue), commit message, commit code
(i.e., code data in one changed file of the commit) and code
change (i.e., difference between two versions of the changed
code file).

Notation: B = {t1, t2, · · · , t|B|} indicates a batch of issue-
commit links, where ti = {si, qi} and ti ∈ B. si and qi
denote the issue and the commit in the one-to-one issue-
commit link ti. B includes both true links Btrue and false links
Bfalse. The complete input data X is randomly divided into
multiple batches (i.e., multiple B) in each training iteration
following the standard machine learning training paradigm.
Other notations are explained when they are used.

B. Distillation of Code Pre-training Model (P1)

The software engineering community has embraced the
use of pre-trained models that have achieved a great suc-
cess in Natural Language Processing and Computer Vision
domains [21], [28], and there is a surge of works on pre-
trained models [22], [29], [30] for code-related tasks recently.
For the issue-commit link recovery task, pre-training has been
firstly adopted in T-BERT [18].

The effectiveness of pre-trained models can be attributed
to their ability to learn universal representations from a mas-
sive amount of mostly unlabeled data through self-supervised
learning tasks to benefit various downstream tasks with rel-
atively much less data. This leads to a better starting point
for model optimization, improved generalization performance,
and a form of regularization to prevent overfitting on small
datasets [31]. Despite the empirical success, a widely rec-
ognized problem of pre-trained models is the computational
efficiency problem, as they often have a large number of
parameters and take a long time for training and inference [32],
[33].

EALink is also designed based on pre-training and it can
adopt any code pre-trained model to have all the benefits
of pre-training. To reduce the size of the pre-trained model
as well as the training and inference time, we adopt the
idea of knowledge distillation [34] to transfer the knowledge
encoded in the large pre-trained model (i.e., teacher) to a
compact student model. The student model is later used for
issue-commit link recovery in EALink. Fig. 5 illustrates the
distillation process.

https://github.com/apache/calcite
https://github.com/tree-sitter/tree-sitter

Layer

Layer

Layer

Layer

Layer

Layer

……

MSE Loss

MSE Loss

Teacher Student

NL and PL Vocabularies

Output Token
Representations

× L

Token 1 Token 2 …… Token N

Similar

Channel

Channel

Fig. 5: Distillation for the code pre-trained model.

Teacher Model: Let ft(X; θ) denote the code pre-trained
teacher model where X is the input to EALink and θ is
model parameters. Prevalent code pre-trained models typically
adopt a BERT-style architecture which contains a multi-layer
bidirectional Transformer [35] with L Transformer blocks. For
instance, CodeBERT [22] uses exactly the same architecture
as RoBERTa-base [24] with 12 layers. Since the use of
Transformer has become ubiquitous, we omit the background
description of Transformer.

Student Model: The distillation component aims to learn
a much smaller parameter set θ′ for a compact student
model fs(X; θ′) which shows similar performance to the large
pre-trained teacher model. In EALink, we use a two-layer
RoBERTa (i.e., two Transformer blocks) as the student model.

Distillation Strategy: A common and easy-to-deploy dis-
tillation strategy is the last-layer distillation [34], i.e., the
student imitates the output from the last layer of the teacher
model. However, as the number of training epochs increases,
the student model using last-layer distillation may face the
poor generalization issue caused by overfitting on the training
data [32]. Therefore, we opt to the intermediate-layer dis-
tillation strategy [36] that distills encoded knowledge from
intermediate layers in the teacher model. The hidden states of
all NL and PL tokens in a teacher’s hidden layer are used as
hints to train the hidden states in a student’s layer so that the
hidden states of corresponding teacher and student layers are
close. To avoid high overhead, we train each of the two layers
in the student model to mimic one intermediate layer in the

teacher model and each teacher-student distillation layer pair
is called as a distillation channel as shown in Fig. 5. We use
a dimension-wise MSE loss (i.e., squared Euclidean distance)
in distillation:

Lkd =
∑

⟨lt,ls⟩∈C

∑
v∈V

d∑
z=1

(
h(lt)
v,z − h(ls)

v,z

)2

, (1)

where C denotes all pre-set distillation channels, V is the
vocabulary containing all pre-trained NL and PL tokens, and
d indicates the dimensionality of hidden states. h

(lt)
v,z and

h
(ls)
v,z indicates the z-th dimension of the hidden state for the

token v output in the lt-th layer of the teacher model and
the ls-th layer of the student model, respectively. After the
distillation, the student model can produce representations for
NL and PL tokens that are similar to the teacher model’s
output representations. And the student model has much fewer
parameters, making it more easy to adopt the student model
in fine-tuning and inference.

C. Inter-Commit Correlation Modeling (P2)

As discussed in previous sections, multiple commits may
correspond to the same issue and we believe this provides
additional supervision to help better model commits. Since
commits belonging to the same one-to-many issue-commit link
should be related to each other (e.g., they together fix a bug),
we design an inter-commit correlation modeling component in
EALink to capture such correlations.

Specifically, this component is designed with the idea of
contrastive learning [23]. Contrastive learning has become
prevalent representation learning paradigm as it does not
require labels and can learn such a representation space where
similar sample pairs stay close to each other while dissimilar
ones are far apart. For a commit qi in an issue-commit link
ti = {si, qi} from a batch of true issue-commit links Btrue,
we sample another link tj = {sj , qj} from Btrue and use the
commit qj as the positive sample of qi. ti and tj belong to the
same one-to-many link, i.e., si and sj are identical. If no such
qj exists, qi is treated as the positive sample of itself. We do
not sample negative samples explicitly. Instead, we treat other
|Btrue|−2 links within Btrue (exclude all other links in the same
one-to-many link as ti and tj) as negative examples.

The representation qi of a commit qi is obtained via:
qi = mi⊕ci, where ⊕ is the concatenation operation. mi and
ci are representations of commit message and commit code
generated by the student model, respectively. For contrastive
instance discrimination, we adopt a non-parametric contrastive
learning loss [37] by using cosine similarity as similarity
measure:

Lcl(Btrue) = −
∑

ti∈Btrue

log
esim(qi,q

+
i)/τ∑

j∈N (ti)
esim(qi,qj)/τ

, (2)

where Lcl(Btrue) is the loss for true links Btrue in a batch
B, N (ti) is the in-batch negative samples of the link ti, q+

i

denotes the representation of the positive sample of the commit
qi, and sim (·) indicates the inner product. τ is a temperature

hyperparameter that controls the concentration level of the
distribution. Summing up Lcl(Btrue) for all batches, we have
the complete contrastive learning loss Lcl.

D. Distinction between Commit Code (P3)

To eliminate the noise brought by loosely related and
unrelated commit code, we define an auxiliary task, issue-
code link prediction to enhance the understanding of EALink
on the importance of each commit code. The issue-code link
prediction task estimates the relevance between issues and
commit code.

To be specific, each issue-code link pi = ⟨si, ci⟩, where ci
indicates the first kPL code tokens in the code change of a
changed code file, is fed to the student model. si and ci are
representations of the issue text si and the code ci in the link
pi, respectively. They are the concatenation of their tokens’
representations. Similar to commit code, we preserve the first
kNL tokens in each issue text. Then, si and ci are passed to
a binary classifier which is a two-layer feedforward neural
network (FFN):

s′i = AVG(si), c′i = AVG(ci)

ŷ⟨si,ci⟩ = f2
(

f1
(
s′i ⊕ c′i ⊕ |c′i − s′i|

))
,

(3)

where AVG(·) indicates average pooling, f1(·) is a single-layer
FFN with the Tanh activation, and f2(·) is a single-layer FFN
without activation. ŷ⟨si,ci⟩ ∈ R2 indicates the probabilities of
the existence and the non-existence of the issue-code link pi.

Based on the data we construct in Sec. III-B4 for issue-
code link prediction and the estimated probabilities y of the
issue-code link, we train EALink with an auxiliary objective:

Laux = −
∑

x∈Xaux

∑
⟨s, c⟩∈x

y⟨s, c⟩ · log ŷ⟨s, c⟩, (4)

where Xaux is the true issue-commit link set in the auxiliary
dataset, x is a true issue-commit link in Xaux, s indicates the
issue text in x, c is the commit code in one changed file of a
commit in x, and y⟨s, c⟩ is the binary label for the relevance
between s and c.

We train the issue-code link prediction task together with
the issue-commit link recovery task in a manner of multi-
task learning [38] (illustrate in Sec. IV-E). Multi-task learning
helps EALink learn from related tasks and it enhances the
understanding of EALink on the importance of each commit
code, avoiding the negative impact of loosely related and
unrelated commit code. Unlike FRLink [16] that directly filters
commit code sharing few similar terms with issue text, our
approach is learning based and does not filter any commit
code. This way, we do not need to manually set a similarity
threshold for filtering commit code and avoid the case that
the commit code is semantically related but it shares few
similar terms with the issue text. Moreover, loosely related
and unrelated commit code is still leveraged in training: they
help train EALink to better distinguish commit code.

E. Putting All Together

The main task of EALink (i.e., the issue-commit link
recovery task) is optimized via the following objective used
in existing works [10]:

Lmain =
∑
x∈X

∑
⟨s, q⟩∈x

∣∣y⟨s,q⟩ − sim(s,q)
∣∣ , (5)

where X is the issue-commit link set, x is a link, s is the issue
in x, q is a commit in x, y⟨s,q⟩ is the binary label (1 if ⟨s, q⟩
is a true link, otherwise 0), and sim(·) is the cosine similarity.
s is the representation of s output by the student model and
q is the representation of q obtained similar as in Sec. IV-C.

False Link Generation (P4): X includes both true links
(extracted by tags) and false links. The main issue of existing
false link generation methods [10], [13], [16], [25] is that they
require a time threshold (e.g., 7 days) to filter commits. But
it is hard to set a reasonable time threshold. To overcome
this problem, we opt to design a similarity based false link
generation method. To be specific, for the issue s in a known
true link, EALink finds its least similar issue s′ by comparing
cosine similarity between representations of their issue text.
We connect the commit q, which is originally linked to s in
a true link, to s′ in order to construct a false link. If multiple
possible q exists (i.e., one-to-many issue-commit link), we
pick the first commit scanned by EALink. The main overhead
of the above method is caused by calculating all-pair cosine
similarities and the time complexity is O(|T |2) where |T | is
the number of all issues. To reduce the cost of generating false
links, we only search irrelevant issues contained in the same
batch of true links (Btrue) instead of all issues during training
and the time complexity reduces to O(|Btrue|2).

As illustrated in Sec. IV-D, EALink is optimized in a
manner of multi-task learning and the complete objective is
as follows:

L = Lmain + λcl · Lcl + λaux · Laux, (6)

where λcl and λaux are hyper-parameters for task weights.
Through multi-task learning, EALink is fine-tuned to leverage
useful information contained in multiple related tasks that may
be difficult to learn in the main task to improve the recovery
performance.

When making predictions, EALink calculates the cosine
similarity between the representations s and q of the target
issue s and the target commit q. s and q are obtained
in a similar way as in Eq. 5. Following FRLink [16] and
DeepLink [17], the similarity threshold is set to 0.5, which
means that if the similarity is larger than 0.5, EALink will
predict ⟨s, q⟩ as a true link.

V. EXPERIMENTS

A. Evaluation Settings

We choose four prevalent metrics Precision@k (P@k),
Normalized Discounted Cumulative Gain (NDCG@k), Mean
Reciprocal Rank (MRR) and Hit Ratio (Hit@k) for evaluation.

TABLE III: Comparisons between different methods. Best performance on a project w.r.t. a metric is shown in bold.
EALink T-BERT

Project P@1 (Hit@1) P@10 Hit@10 MRR NDCG@1 NDCG@10 P@1 (Hit@1) P@10 Hit@10 MRR NDCG@1 NDCG@10
Ambari 0.9490 0.1231 0.9800 0.9622 0.5988 0.6130 0.5524 0.0775 0.7748 0.6321 0.3485 0.4405
Calcite 0.6555 0.0920 0.8566 0.7313 0.4136 0.4955 0.5540 0.0836 0.8357 0.6450 0.3495 0.4626
Groovy 0.6650 0.1029 0.8310 0.7323 0.4196 0.4919 0.4655 0.0718 0.7175 0.5482 0.2937 0.3937
Ignite 0.3950 0.0907 0.7210 0.5054 0.2492 0.3814 0.4304 0.0709 0.7087 0.5273 0.2716 0.3843
Isis 0.2423 0.0983 0.5184 0.3397 0.1529 0.2622 0.2394 0.0443 0.4304 0.3049 0.1510 0.2221

Netbeans 0.3273 0.0824 0.6727 0.4567 0.2065 0.3519 0.2794 0.0507 0.5074 0.3614 0.1763 0.2638
Average 0.5390 0.0982 0.7633 0.6213 0.3401 0.4327 0.4202 0.0665 0.6624 0.5032 0.2651 0.3612
Improve - - - - - - (↑28.27%) (↑47.67%) (↑15.23%) (↑23.47%) (↑28.29%) (↑19.80%)

DeepLink VSM
Project P@1 (Hit@1) P@10 Hit@10 MRR NDCG@1 NDCG@10 P@1 (Hit@1) P@10 Hit@10 MRR NDCG@1 NDCG@10
Ambari 0.0625 0.0238 0.2167 0.1266 0.0394 0.0992 0.4209 0.0680 0.6798 0.5103 0.2655 0.3698
Calcite 0.0926 0.0185 0.1739 0.1346 0.0584 0.0909 0.2770 0.0676 0.7512 0.4919 0.1866 0.3677
Groovy 0.0062 0.0176 0.1522 0.0587 0.0039 0.0554 0.4983 0.0776 0.7763 0.5936 0.3144 0.4284
Ignite 0.0584 0.0182 0.1700 0.1100 0.0368 0.0813 0.1012 0.0581 0.5806 0.3256 0.1269 0.2765
Isis 0.3291 0.0538 0.4960 0.3994 0.2076 0.2787 0.1191 0.0471 0.4705 0.2264 0.0751 0.2065

Netbeans 0.0870 0.0224 0.1925 0.1293 0.0549 0.0917 0.0125 0.0375 0.3750 0.2040 0.0789 0.1710
Average 0.1060 0.0257 0.2336 0.1598 0.0668 0.1162 0.2382 0.0593 0.6056 0.3920 0.1746 0.3033
Improve (↑408.65%) (↑281.85%) (↑226.83%) (↑288.88%) (↑408.88%) (↑272.38%) (↑126.28%) (↑65.60%) (↑26.04%) (↑59.49%) (↑94.79%) (↑42.66%)

In our evaluation, a query refers to a true link and its top-k
ranking list consists of k ranked candidate commits.

• Precision@k indicates the percentage of relevant com-
mits to the query in the top-K ranking list predicted by
a model:

Precision@k =
1

|Q|
∑
i∈Q

Reli
k

, (7)

where Q is the query set, |Q| is the number of queries,
Reli represents the number of relevant commits that
appear in the top-k ranking list for the i-th query.

• NDCG@k evaluates the ranking position of relevant
commits:

NDCG@k =
1

Zk

k∑
i=1

2ri − 1

log2(i+ 1)
, (8)

where Zk is a normalizer which ensures that perfect
ranking has a value of 1, ri is the relevance of commit
at position i. We use simple binary relevance: ri = 1 if
the commit is actually linked to the target issue, and 0
otherwise.

• MRR measures whether the relevant commits to an issue
are placed in more prominent positions in the ranking list:

MRR =
1

|Q|

|Q|∑
|i=1|

1

Ranki
, (9)

where Ranki refers to the ranking of the relevant commit.
• Hit@k: refers to the probability that a relevant commit

is in the predicted top-k ranking list:

Hit@k =
1

|Q|

|Q|∑
i

I (Ranki ≤ k) (10)

where I(·) is an indicator function. If the condition is true,
it returns 1, otherwise 0. Hit@1 is identical to P@1.

For each project, true links were randomly divided by 6:2:2
for training, validation and test. To accelerate the evaluation,
we randomly sampled 1,000 unique issues at most from each
project’s test set. If the number of unique issues was less than
1,000, we selected all the unique issues. In each test set, true

links E containing the selected issues were picked. For each
true link ti = {si, qi} in E , we randomly sampled 99 other
true links in E . Let tj = {sj , qj} be one of the 99 sampled
links. si and sj should not be identical, i.e., ti and tj do not
belong to the same one-to-many issue-commit link. Then, we
connected qj to si to construct a false link for ti. For each true
link in E , we constructed 99 false links. In the experiments,
we evaluate whether the model can rank a true link ahead of
its corresponding 99 false links.

B. Environment and Hyper-parameter Settings

We implemented EALink using PyTorch. The experiments
were run on a machine with two Intel(R) Xeon(R) Silver
4214R CPU @ 2.40GHz, 256 GB main memory and one
NVIDIA GeForce RTX 3090.

The default teacher model in EALink is CodeBERT [22] and
we used hyper-parameters provided by the authors. We also
explored other code pre-trained models in our experiments.
The student model had 2 layers, 1 head and 768 hidden
dimensions. By default, we set distillation channels as follows:
the first layer of teacher was connected to the first layer of
student, and the fifth layer of teacher was connected to the
second layer of student. Results of other settings for distillation
channels are reported in RQ4 of Sec. V-D. λcl and λaux were
set to 1 by default. The length of tokens in each natural
language text (e.g., kNL in Sec. IV-D) and the length of tokens
in each code data (e.g., kPL in Sec. IV-D) were set to 35 and
80, respectively. To train the model, we employed the Adam
optimizer [39], and the batch size was set as 16. The initial
learning rate was set to 4e−5 and was multiplied by 0.8 every
6 epochs. We set hyper-parameters for baselines as suggested
by their authors.

C. Baselines

We compare EALink with three representative and publicly
available issue-commit link recovery approaches:

• T-BERT4 [18] is the state-of-the-art pre-trained method.
It is first pre-trained on the large-scale CodeSearch-
Net [40] for the code search task [41]. Then, the pre-

4https://github.com/jinfenglin/TraceBERT

https://github.com/jinfenglin/TraceBERT

trained T-BERT is fine-tuned on the small issue-commit
link data for the link recovery task.

• DeepLink5 [10] is a deep learning based method which
adopts word embedding and RNN to learn the semantic
representations of issues and commits for interlinking
issues and commits.

• VSM6 [18], [42] is an information retrieval based method.
It expresses code and textual data as bags of words which
are further represented as word vectors. The relevance
between an issue and a commit is calculated based on
the similarity between their corresponding word vectors.

We set all the hyper-parameters for baselines as specified in
the original papers.

D. Experimental Results and Analysis

Next, we report and analyze the results of our experiments
in order to answer five research questions:

RQ1: Does EALink outperform state-of-art baselines?
We compare EALink with three baselines on the 6 Java

projects in our dataset. Tab. III reports the performance of
all methods and the improvement percentage of EALink over
baselines. In Tab. III, the best performance on a project w.r.t.
a metric is shown in bold.

Tab. III shows that, in a few cases, baselines outperforms
EALink. However, they do not show robust performance as
EALink. For example, T-BERT is 0.04 higher than EALink in
one project Ignite on P@1 and DeepLink outperforms EALink
in the Isis project, while on average, EALink achieves 0.5390
on P@1 (Hit@1), 0.0982 on P@10, 0.7633 on Hit@10, 0.6213
on MRR, 0.3401 on NDCG@1 and 0.4327 on NDCG@10,
respectively. The lowest and highest Hit@10 are 0.5184 for the
Isis project and 0.9800 for the Ambari project, respectively.
The high Hit@k indicates that the relevant commit has a
high probability of being ranked in the top 10 by EALink.
Compared to baselines, EALink improves the quality of issue-
commit link recovery by 408.65% at most, showing the
effectiveness of EALink.

The pre-trained model T-BERT achieves the highest P@1,
MRR, NDCG@1 and NDCG@10 on Ignite, while EALink
achieves highest P@10 and Hit@10. However, on the other
five projects, EALink outperforms T-BERT on all metrics.
On average, EALink exceeds T-BERT by 15.23%-47.67%,
showing that the superiority of EALink over the existing
pre-training issue-commit recovery method. Moreover, we
can conclude that the adoption of knowledge distillation to
compress the size of the pre-trained model does not sacrifice
the accuracy of recovery.

Surprisingly, DeepLink shows worst performance on almost
all metrics and its performance is even worse than traditional
information retrieval based method VSM. The exception is
the Isis project, where DeepLink shows best P@1 (Hit@1),
MRR, NDCG@1 and NDCG@10. DeepLink adopts deep
neural networks to better capture the semantics of code and

5https://github.com/ruanhang1993/DeepLink
6We use https://pypi.org/project/gensim to implement VSM.

TABLE IV: Total training and test time for each model on
Isis. Test time is recorded for 1,000 recovery queries.

EALink T-BERT DeepLink
Train (hr) 14h 138h 37h
Test (sec) 126s 44,353s 1,145s

TABLE V: Results of the ablation study on Isis.

P@1 (Hit@1) MRR NDCG@1
EALink w/o aux 0.2193 0.3172 0.1384
EALink w/o cl 0.0521 0.1246 0.0329

EALink 0.2423 0.3397 0.1529

textual data. A possible reason for its subdued performance,
in our opinion, is the design of the similarity module. It
computes the cosine similarities between issue title vector and
commit message vector, issue description vector and commit
message vector, and issue code vector and commit code vector,
where the term “vector” refers to the representation. Then,
the maximum cosine similarity among the three calculated
values is used to estimate the relevance between an issue and
a commit. However, the cross-modal similarity, i.e., the simi-
larity between the issue and the changed code in commits is
not considered. Moreover, it chooses the maximum similarity
value instead of considering all the three similarity values,
which may cause information loss.

RQ2: Does EALink reduce the training and inference
overhead compared to existing pre-trained method? (P1)

One design goal of EALink is to reduce the training and in-
ference overhead of deep learning based link recovery method.
In Tab. IV, we report the training and test time of EALink,
T-BERT and DeepLink on a moderate-size project Isis among
all the 6 projects in our constructed dataset. As shown in
Tab. IV, DeepLink needs 1,145 seconds to evaluate 1,000
recovery queries and T-BERT needs 44,353 seconds, which
indicates that the pre-trained model is heavier and more time-
consuming than the simple deep learning model. EALink uses
only 126 seconds, which is several orders of magnitude lower
than T-BERT. Hence, EALink is more scalable to large-scale
projects in the real world. In other 5 projects, similar overhead
gaps can be observed. Observed from Tab. III and Tab. IV, we
can conclude that the design (i.e., use a distilled, compacted
student model) of EALink makes it possible to take the
advantage of a large code pre-trained model while keeping low
overhead: EALink shows similar or much higher performance
compared to T-BERT, while it requires training and test time
that is an order of magnitude shorter. In other words, EALink
is suitable for deployment in large-scale projects.

RQ3: Does each component in EALink contribute to its
performance? (P2, P3, P4)

Firstly, we report the results of an ablation study in Tab. V.
We take the Isis project as an example to illustrate and similar
trends can be observed in other projects. The ablation study
allows us to evaluate the contribution of each components in
EALink. In Tab. V, “EALink w/o aux” denotes the version that

https://github.com/ruanhang1993/DeepLink
https://pypi.org/project/gensim

TABLE VI: Results using different false link generation on
Isis.

P@1 (Hit@1) MRR NDCG@1
EALinkf 0.1843 0.2695 0.1163
EALink 0.2423 0.3397 0.1529

TABLE VII: Performance of using different channels on Isis.

t1 t2 P@1 (Hit@1) MRR NDCG@1
1 5 0.2423 0.3397 0.1529
3 7 0.2417 0.3092 0.1355
4 9 0.2301 0.3216 0.1452
6 12 0.2224 0.3235 0.1403

TABLE VIII: Performance of using different task weights on
Isis.

λcl λaux P@1 (Hit@1) MRR NDCG@1
1 1 0.2423 0.3397 0.1529

0.5 2.5 0.1595 0.2596 0.1006
2 10 0.1187 0.2807 0.1190
3 15 0.2193 0.32 0.1384
4 20 0.2117 0.31 0.1335

TABLE IX: Performance of using different teachers on Isis.

Teacher P@1 (Hit@1) MRR NDCG@1
CodeBERT 0.2423 0.3397 0.1529

GraphCodeBERT 0.2239 0.3171 0.1413
UniXcoder 0.2362 0.3393 0.1490

removes the issue-code prediction task proposed in Sec. IV-D
and it treats all code changes in a commit equally. “EALink
w/o cl” indicate the version that removes the inter-commit
correlation modeling component illustrated in Sec. IV-C. From
the results, we can observe that both “EALink w/o aux”
and “EALink w/o cl” show worse performance compared to
EALink: the MRR is reduced by 0.0225 and 0.2151 for Isis
project, respectively.

The observation shows that, the designs of both the auxil-
iary task and the inter-commit correlation modeling enhance
EALink. In other words, addressing P2 and P3 discussed in
Sec. II helps improve the quality of generated links. Compar-
ing “EALink w/o aux” and “EALink w/o cl”, we can see that
the inter-commit correlation modeling component contributes
more to the overall performance than the auxiliary task.

We further investigate the impact of using different false
link generation methods and report the results on Isis in
Tab. VI. Similar conclusion can be drawn for other projects. In
Tab. VI, EALinkf indicates that we use the time interval based
false link generation method used in previous link recovery
methods [10], [13], [16], [25], which may generate conflicting
false links as we discussed in Sec. II. We can see that EALink
outperforms EALinkf by a large margin since our proposed
false link generation method produces high-quality false links
and does not sample true links as false links.

In summary, based on the results reported in Tab. V and
Tab. VI, we can conclude that all components in EALink
contribute to its high performance in the issue-commit link
recovery task.

1 5 10 20
K

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pr
ec

is
io

n@
K EALink

DeepLink
T-BERT

1 5 10 20
K

0.1

0.2

0.3

0.4

0.5

N
D

CG
@

K

EALink
DeepLink
T-BERT

Fig. 6: Impacts of k on evaluation results. X axis shows k.

RQ4: Do different settings affect EALink?
We change several settings of EALink and investigate the

impacts on EALink. We use Isis to illustrate the result and
similar trends can be observed in other projects.

Firstly, we investigate the impact of changing the distillation
channels of the distillation component. In Tab. VII, we report
the performance when varying the channels. t1 and t2 indicate
layers in the pre-trained teacher model that are chosen to
establish the distillation channels. The t1-th layer is connected
to the first layer in the student model and the t2-th layer is
linked to the second layer in the student model. From Tab. VII,
we can see that changing the setting of channels affects the
performance slightly and using the default setting yields the
best result.

Secondly, we investigate the impacts of changing task
weights λcl and λaux in the training objective shown in Eq. 6.
We report the results in Tab. VIII. When changing the values
of λcl and λaux, the performance of EALink is affected. The
best result is achieved using a balanced multi-task learning
loss function (λcl = 1, λaux = 1). Hence, we use λcl = 1,
λaux = 1 in the default setting.

Thirdly, we change the pre-trained model used as the teacher
in EALink and investigate the impact. Tab. IX demonstrates
the performance of using three code pre-trained models Code-
BERT [22], GraphCodeBert [29] and UniXcoder [30] as the
teacher in EALink on Isis. We can see that using different
teachers have an impact on the performance of EALink, but
the performance differences are slight, showing that EALink
is flexible to accommodate different code pre-trained models.
CodeBERT shows best results and we adopt it as the default
teacher in EALink.

Finally, we further show the results when changing k. Fig. 6
shows the performance when using different k for evaluations.
We can see that all the three methods exhibit similar trends as
k changes, showing that using different k does not affect the
performance rank of the three methods. In other words, using
top-k ranking metrics, we can draw consistent conclusions
regardless of the value of k.

In summary, changing the settings of EALink affects its per-
formance, but most changes do not incur significant impacts.

VI. THREATS TO VALIDITY

Two main threats may affect the validity of our study.
The first threat is the types and the size of the training data.

Our experiments are conducted on Java projects only. We only
train and evaluate recovery models on our constructed data
from 6 Apache projects. The performance of EALink may vary

when applying it to other programming languages or training
it on more project data. Moreover, the number of generated
false links can be set to a larger number, while the number
of true links is limited by the occurrence frequency of issue
tags in commits. To avoid the impact of imbalanced data on
training EALink, we only generate one false link for each true
link in EALink.

The second threat is the reliability of true and false links.
Currently, true links in our dataset are established according to
the crawled issue tags. But related commits may not contain
issue tags, resulting in the missing of some true links in our
data. We propose a false link generation mechanism used in
EALink. It connects the issue, which is least similar to the
issue in a true link, to the commit in the corresponding true
link for constructing a false link. Since the used issue can
be completely irrelevant to the commit in the true link, the
mechanism may generate false links that are too easy for
EALink to identify, bringing ineffective model training.

VII. RELATED WORK

In this section, we discuss several areas related to our work.

A. Software Traceability Recovery

Information retrieval (IR) methods are widely used in early
approaches for traceability recovery. For example, several
works adopt Vector Space Model [43], Latent Semantic In-
dexing [44], [45] and Latent Dirichlet Allocation [46], [47] to
recover software traceability. However, these methods heavily
rely on feature engineering and represent software artifacts as
bags of words, which cannot fully capture artifacts’ semantics.
To solve this problem, machine learning (ML) methods are
used to better capture artifacts’ semantics. ENRL [48] trains
seven classifiers using golden standard traceability links to
detect positive traceability links in the ranking lists generated
by IR methods. Similarly, TRAIL [49] trains six classi-
fiers to automatically verify ranked links generated by IR
methods. SPLINT [42] adopts semi-supervised learning to
predict traceability links with unlabeled sets. To work with
less training data, ALCATRAL [50] integrates active learning
and supervised traceability link classifier. Comet [51] adopts
probabilistic model to capture relationships between developer
feedback and transitive (often implicit) relationships among
groups of software artifacts.

B. Issue-Commit Link Recovery

Pioneering works on issue-commit link recovery [11], [13],
[14] heavily rely on feature engineering and manual rules
and are hard to generalize. Traditional learning based methods
adopt machine learning (e.g., classification) to automatically
learn from features. Representative approaches include but not
limited to RCLinker [15], FRLink [16], PULink [9], Hybrid-
Linker [7] and the work of Rath et al. [8]. Although they
overcome the drawbacks of feature based and rule based
approaches to some extent, they suffer from the deficiency
of shallow learning (weak express power) and lack of training
data.

More recent works deploy deep learning to improve issue-
commit link recovery. DeepLink [10] adopts word embedding
and RNN to learn the semantic representations of issues and
commits. TraceNN [20] uses similar techniques as DeepLink,
but it is designed for recovering traceability links between
requirements and design documents instead of issue-commit
links. KG-DeepLink [17] combines RNN and SVM for pre-
dicting links based on a code knowledge graph constructed
from ASTs. Beside, pre-trained models like BERT [21] also
shed some light on overcoming the lack of issue and commit
training data. Lüders et al. [52] adopt BERT to predict the
types of links (e.g., duplicate and clone) in issue trackers. T-
BERT [18] is first pre-trained on CodeSearchNet [40]. Then,
it is fine-tuned on small issue-commit link data for the link
recovery task. Although deep learning based methods show
promising results, they do not fully address the problems
discussed in Sec. II.

C. Pre-training for Code Representation Learning
There are various code-related tasks (e.g., code comple-

tion [53], code refactoring [54] and code summarization [55])
that require code representation learning. The success of
BERT [21] has inspired the research on code pre-trained
models that significantly benefit code-related tasks. Code-
BERT [22] is a bimodal (NL and PL) pre-trained model.
GraphCodeBERT [29] uses data flow to learn more com-
prehensive representations. UniXcoder [30] leverages cross-
modal contents and mask attention matrices with prefix
adapters to improve code pre-training. Unlike previous code
pre-trained models that only focus on the encoder, Mas-
tropaolo et al. [56] and Niu et al. [57] explore the seq2seq
architecture in code pre-training.

VIII. CONCLUSION

Issue-commit links play a vital role in various software
development and maintenance tasks. However, they are com-
monly deficient in software development and maintenance.
Therefore, automatic issue-commit link recovery methods,
which can reduce the cost of manual labeling and assist with
various software engineering tasks, have attracted significant
attention. In this paper, we point out the problems of existing
issue-commit link recovery methods and propose EALink
for efficiently and accurately recovering issue-commit links.
EALink requires much fewer model parameters but shows
better recovery results compared to existing recovery models.
In the future, we will explore using other software artifacts
(e.g., requirements, designs and test cases) to further im-
prove EALink. We will also deploy other model compression
techniques to further reduce the model size of EALink and
expedite the recovering process.

ACKNOWLEDGMENT

This work was partially supported by National Key R&D
Program of China (No. 2022ZD0118201), National Natural
Science Foundation of China (No. 62002303, 42171456),
Natural Science Foundation of Fujian Province of China (No.
2020J05001) and CCF-Tencent Open Fund.

REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
Trans. Software Eng., vol. 28, no. 10, pp. 970–983, 2002.

[2] T. W. W. Aung, H. Huo, and Y. Sui, “A literature review of automatic
traceability links recovery for software change impact analysis,” in
ICPC, 2020, pp. 14–24.

[3] G. Nguyen-Truong, H. J. Kang, D. Lo, A. Sharma, A. E. Santosa,
A. Sharma, and M. Y. Ang, “HERMES: using commit-issue linking
to detect vulnerability-fixing commits,” in SANER, 2022, pp. 51–62.

[4] L. Naslavsky and D. J. Richardson, “Using traceability to support model-
based regression testing,” in ASE, 2007, pp. 567–570.

[5] M. C. Panis, “Successful deployment of requirements traceability in a
commercial engineering organization...really,” in RE, 2010, pp. 303–307.

[6] A. D. Rodriguez, J. Cleland-Huang, and D. Falessi, “Leveraging inter-
mediate artifacts to improve automated trace link retrieval,” in ICSME,
2021, pp. 81–92.

[7] P. R. Mazrae, M. Izadi, and A. Heydarnoori, “Automated recovery of
issue-commit links leveraging both textual and non-textual data,” in
ICSME, 2021, pp. 263–273.

[8] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mäder,
“Traceability in the wild: automatically augmenting incomplete trace
links,” in ICSE, 2018, pp. 834–845.

[9] Y. Sun, C. Chen, Q. Wang, and B. W. Boehm, “Improving missing issue-
commit link recovery using positive and unlabeled data,” in ASE, 2017,
pp. 147–152.

[10] H. Ruan, B. Chen, X. Peng, and W. Zhao, “Deeplink: Recovering issue-
commit links based on deep learning,” J. Syst. Softw., vol. 158, 2019.

[11] R. Wu, H. Zhang, S. Kim, and S. Cheung, “Relink: recovering links
between bugs and changes,” in SIGSOFT FSE, 2011, pp. 15–25.

[12] M. Izadi, P. R. Mazrae, T. Mens, and A. van Deursen, “Linkformer:
Automatic contextualised link recovery of software artifacts in both
project-based and transfer learning settings,” arXiv Preprint, 2022.
[Online]. Available: https://arxiv.org/abs/2211.00381

[13] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Multi-
layered approach for recovering links between bug reports and fixes,”
in SIGSOFT FSE, no. 63, 2012, pp. 1–11.

[14] G. Schermann, M. Brandtner, S. Panichella, P. Leitner, and H. C. Gall,
“Discovering loners and phantoms in commit and issue data,” in ICPC,
2015, pp. 4–14.

[15] T. B. Le, M. L. Vásquez, D. Lo, and D. Poshyvanyk, “Rclinker: auto-
mated linking of issue reports and commits leveraging rich contextual
information,” in ICPC, 2015, pp. 36–47.

[16] Y. Sun, Q. Wang, and Y. Yang, “Frlink: Improving the recovery of
missing issue-commit links by revisiting file relevance,” Inf. Softw.
Technol., vol. 84, pp. 33–47, 2017.

[17] R. Xie, L. Chen, W. Ye, Z. Li, T. Hu, D. Du, and S. Zhang, “Deeplink: A
code knowledge graph based deep learning approach for issue-commit
link recovery,” in SANER, 2019, pp. 434–444.

[18] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. Cleland-Huang, “Traceability
transformed: Generating more accurate links with pre-trained BERT
models,” in ICSE, 2021, pp. 324–335.

[19] A. D. Lucia, F. Fasano, and R. Oliveto, “Traceability management for
impact analysis,” in 2008 Frontiers of Software Maintenance, 2008, pp.
21–30.

[20] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced soft-
ware traceability using deep learning techniques,” in ICSE, 2017, pp.
3–14.

[21] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT (1), 2019, pp. 4171–4186.

[22] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “Codebert: A pre-trained model for
programming and natural languages,” in EMNLP (Findings), 2020, pp.
1536–1547.

[23] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-
supervised learning: Generative or contrastive,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 1, pp. 857–876, 2023.

[24] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized BERT pretraining approach,” arXiv Preprint, 2019. [Online].
Available: https://arxiv.org/abs/1907.11692

[25] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein, “LINKSTER:
enabling efficient manual inspection and annotation of mined data,” in
SIGSOFT FSE, 2010, pp. 369–370.

[26] M. Claes and M. V. Mäntylä, “20-mad: 20 years of issues and commits
of mozilla and apache development,” in MSR, 2020, pp. 503–507.

[27] D. D. Palmer, “Text preprocessing,” in Handbook of Natural Language
Processing. Chapman and Hall/CRC, 2010, pp. 9–30.

[28] F. Chen, D. Zhang, M. Han, X. Chen, J. Shi, S. Xu, and B. Xu, “VLP: A
survey on vision-language pre-training,” Int. J. Autom. Comput., vol. 20,
no. 1, pp. 38–56, 2023.

[29] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, M. Tufano, S. K. Deng, C. B. Clement, D. Drain,
N. Sundaresan, J. Yin, D. Jiang, and M. Zhou, “Graphcodebert: Pre-
training code representations with data flow,” in ICLR, 2021. [Online].
Available: https://openreview.net/pdf?id=jLoC4ez43PZ

[30] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in ACL (1),
2022, pp. 7212–7225.

[31] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” Science China
Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020.

[32] S. Sun, Y. Cheng, Z. Gan, and J. Liu, “Patient knowledge distillation
for BERT model compression,” in EMNLP/IJCNLP (1), 2019, pp. 4322–
4331.

[33] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu, “Tinybert: Distilling BERT for natural language understanding,”
in EMNLP (Findings), vol. EMNLP, 2020, pp. 4163–4174.

[34] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” Int. J. Comput. Vis., vol. 129, no. 6, pp. 1789–1819, 2021.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017,
pp. 5998–6008.

[36] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “Fitnets: Hints for thin deep nets,” in ICLR (Poster), 2015.
[Online]. Available: https://openreview.net/forum?id=SWN-Izy8Sl9

[37] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning
via non-parametric instance discrimination,” in CVPR, 2018, pp. 3733–
3742.

[38] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, 2022.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR (Poster), 2015. [Online]. Available: https:
//arxiv.org/abs/1412.6980

[40] H. Husain, H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” arXiv Preprint, 2019. [Online]. Available: https://arxiv.org/abs/
1909.09436

[41] C. Liu, X. Xia, D. Lo, C. Gao, X. Yang, and J. C. Grundy, “Opportunities
and challenges in code search tools,” ACM Comput. Surv., vol. 54, no. 9,
pp. 196:1–196:40, 2022.

[42] L. Dong, H. Zhang, W. Liu, Z. Weng, and H. Kuang, “Semi-supervised
pre-processing for learning-based traceability framework on real-world
software projects,” in ESEC/SIGSOFT FSE, 2022, pp. 570–582.

[43] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: The study of methods,” IEEE
Trans. Software Eng., vol. 32, no. 1, pp. 4–19, 2006.

[44] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Enhancing an
artefact management system with traceability recovery features,” in
ICSM, 2004, pp. 306–315.

[45] P. Rempel, P. Mäder, and T. Kuschke, “Towards feature-aware retrieval
of refinement traces,” in TEFSE@ICSE, 2013, pp. 100–104.

[46] A. Dekhtyar, J. H. Hayes, S. K. Sundaram, E. A. Holbrook, and
O. Dekhtyar, “Technique integration for requirements assessment,” in
RE. IEEE Computer Society, 2007, pp. 141–150.

[47] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software traceabil-
ity with topic modeling,” in ICSE (1), 2010, pp. 95–104.

[48] D. Falessi, M. D. Penta, G. Canfora, and G. Cantone, “Estimating the
number of remaining links in traceability recovery,” vol. 22, no. 3, 2017,
pp. 996–1027.

[49] C. Mills, J. Escobar-Avila, and S. Haiduc, “Automatic traceability
maintenance via machine learning classification,” in ICSME, 2018, pp.
369–380.

[50] C. Mills, J. Escobar-Avila, A. Bhattacharya, G. Kondyukov,
S. Chakraborty, and S. Haiduc, “Tracing with less data: Active
learning for classification-based traceability link recovery,” in ICSME,
2019, pp. 103–113.

https://arxiv.org/abs/2211.00381
https://arxiv.org/abs/1907.11692
https://openreview.net/pdf?id=jLoC4ez43PZ
https://openreview.net/forum?id=SWN-Izy8Sl9
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436

[51] K. Moran, D. N. Palacio, C. Bernal-Cárdenas, D. McCrystal, D. Poshy-
vanyk, C. Shenefiel, and J. Johnson, “Improving the effectiveness of
traceability link recovery using hierarchical bayesian networks,” in ICSE,
2020, pp. 873–885.

[52] C. M. Lüders, T. Pietz, and W. Maalej, “Automated detection of typed
links in issue trackers,” in RE, 2022, pp. 26–38.

[53] Y. Wang and H. Li, “Code completion by modeling flattened abstract
syntax trees as graphs,” in AAAI, 2021, pp. 14 015–14 023.

[54] H. Liu, Y. Wang, Z. Wei, Y. Xu, J. Wang, H. Li, and R. Ji, “Refbert: A
two-stage pre-trained framework for automatic rename refactoring,” in
ISSTA, 2023, pp. 740–752.

[55] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu, “Improving
code summarization with block-wise abstract syntax tree splitting,” in
ICPC, 2021, pp. 184–195.

[56] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in ICSE, 2021, pp.
336–347.

[57] C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “Spt-code: Sequence-
to-sequence pre-training for learning source code representations,” in
ICSE, 2022, pp. 2006–2018.

	Introduction
	Motivating Examples
	Dataset Construction
	Data Collection
	Data Preparation
	Data Preprocessing
	Feature Extraction
	True Issue-Commit Link Generation
	Issue-Code Link Generation

	Our framework EALink
	Overview
	Distillation of Code Pre-training Model (P1)
	Inter-Commit Correlation Modeling (P2)
	Distinction between Commit Code (P3)
	Putting All Together

	Experiments
	Evaluation Settings
	Environment and Hyper-parameter Settings
	Baselines
	Experimental Results and Analysis

	Threats to Validity
	Related Work
	Software Traceability Recovery
	Issue-Commit Link Recovery
	Pre-training for Code Representation Learning

	Conclusion
	References

