Single-User Injection for Invisible Shilling Attack against
Recommender Systems

Chengzhi Huang
Key Laboratory of Multimedia Trusted Perception and
Efficient Computing, Ministry of Education of China
Xiamen University
Xiamen, China
edisonchen@stu.xmu.edu.cn

ABSTRACT

Recommendation systems (RS) are crucial for alleviating the infor-
mation overload problem. Due to its pivotal role in guiding users
to make decisions, unscrupulous parties are lured to launch at-
tacks against RS to affect the decisions of normal users and gain
illegal profits. Among various types of attacks, shilling attack is
one of the most subsistent and profitable attacks. In shilling at-
tack, an adversarial party injects a number of well-designed fake
user profiles into the system to mislead RS so that the attack goal
can be achieved. Although existing shilling attack methods have
achieved promising results, they all adopt the attack paradigm of
multi-user injection, where some fake user profiles are required.
This paper provides the first study of shilling attack in an extremely
limited scenario: only one fake user profile is injected into the vic-
tim RS to launch shilling attacks (i.e., single-user injection). We
propose a novel single-user injection method SUI-Attack for invisi-
ble shilling attack. SUI-Attack is a graph based attack method that
models shilling attack as a node generation task over the user-item
bipartite graph of the victim RS, and it constructs the fake user
profile by generating user features and edges that link the fake
user to items. Extensive experiments demonstrate that SUI-Attack
can achieve promising attack results in single-user injection. In
addition to its attack power, SUI-Attack increases the stealthiness
of shilling attack and reduces the risk of being detected. We provide
our implementation at: https://github.com/KDEGroup/SUI-Attack.

CCS CONCEPTS

« Security and privacy — Web application security; « Infor-
mation systems — Recommender systems.

KEYWORDS
Shilling Attack, Recommender System, Adversarial Attack

“Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10...$15.00
https://doi.org/10.1145/3583780.3615062

Hui L1’

Key Laboratory of Multimedia Trusted Perception and
Efficient Computing, Ministry of Education of China
Xiamen University
Xiamen, China
hui@xmu.edu.cn

ACM Reference Format:

Chengzhi Huang and Hui Li. 2023. Single-User Injection for Invisible Shilling
Attack against Recommender Systems. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management (CIKM
’23), October 21-25, 2023, Birmingham, United Kingdom. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3583780.3615062

1 INTRODUCTION

With the rapid development of information technology, we are
facing a huge growth of available information, causing the infor-
mation overload problem [3]: it is difficult to effectively make deci-
sions when facing too much information. Recommender systems
(RS) are an essential tool to alleviate information overload and
have been widely deployed in e-commerce platforms (e.g., Ama-
zon and Taobao) and content-providing platforms (e.g., TikTok and
YouTube), bringing massive revenue [59].

However, the prevalence of RS has also attracted unscrupulous
parties [11]. They try to attack RS to can gain illegal profits. Among
various attack types, shilling attack is one of the most subsistent and
profitable attacks against RS [50]. In shilling attack, an adversarial
party injects a number of well-designed fake user profiles into the
system to mislead RS so that the attack goal can be achieved [11,
18, 47]. One main attack goal is to promote a target item: increase
the possibility that the target item can be viewed/bought by people.
Studying how to spoof RS has become a hot direction in the RS
community as it gives insights into improving the defense against
malicious attacks [64].

Much effort has been devoted to designing shilling attack meth-
ods. Pioneering works (e.g., Random Attack [5], Bandwagon At-
tack [4] and Segment Attack [5]) mainly adopt heuristics [18]. Re-
cently, based on the idea of adversarial attack [62], a great number of
shilling attack approaches have sprung up, including but not limited
to optimization based methods [50], GAN based methods [36, 37],
reinforcement learning based methods [48], knowledge distillation
based methods [63] and pre-training based methods [64]. Existing
methods all adopt the same attack paradigm: inject some fake user
profiles into the victim RS. We name such an attack paradigm multi-
user injection. As more injected fake user profiles typically improve
the attack performance but increase the risk of being detected, the
number of the injected fake user profiles is typically not large, e.g.,
50.

Although existing shilling attack methods have achieved promis-
ing attack performance [11], they all assume there is a trade-off
between the number of fake users and the performance of the at-
tack. To our best knowledge, no work has studied and answered a

https://orcid.org/0009-0009-4194-0393
https://orcid.org/0000-0001-9139-3855
https://github.com/KDEGroup/SUI-Attack
https://doi.org/10.1145/3583780.3615062
https://doi.org/10.1145/3583780.3615062

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

critical question about shilling attack: How many fake user profiles
are required to launch a successful shilling attack? In this paper, we
study shilling attack in an extremely limited scenario: only one fake
user profile is injected into the victim RS to launch shilling attacks
(i.e., single-user injection). Adversarial attacks against different Al
models in the extremely restricted settings (e.g., one-pixel attack in
image classification [49] and single-node attack against Graph Neu-
ral Networks [16, 51]) have attracted considerable attention since
they unveil the severe vulnerability of AI models: adversary can
hoax the model with minimum effort. Single-user attacks against
RS, if possible, will result in the virtually undetectable attack as it
is extremely difficult to identify the only fake user from plenty of
real users.

In this paper, we propose a novel single-user injection method
for invisible shilling attack against RS (i.e., SUI-Attack). SUI-Attack
is a graph based attack method that models shilling attack as a node
generation task over the user-item bipartite graph of the victim
RS. SUI-Attack contains two phases: feature generation and edge
generation. The feature generation phase aims to produce toxic
fake user features that can guide the generation of edges that are
connected to the fake user. The edge generation phase connects
the fake user to items in the user-item bipartite graph to ensure the
injected fake user can affect the victim RS, and it is equivalent to
filling the fake user profile with interaction history in contemporary
shilling attack approaches. The contributions of this work can be
summarized as follows:

e We propose the idea of single-user injection. As far as we
know, this is the first work to study shilling attacks in the
extremely restricted scenario.

e We design a novel single-user injection method SUI-Attack,
increasing the stealthiness of shilling attacks and reducing
the risk of being detected. SUI-Attack models the single-
user injection task over the user-item bipartite graph and
constructs the fake user profile by generating its user features
and edges that link the fake user to items.

e We conduct extensive experiments to demonstrate that SUI-
Attack can achieve promising attack results in single-user
injection. In other words, shilling attacks against RS with
single-user injection is achievable. Furthermore, in the tradi-
tional multi-user injection setting, SUI-Attack is shown to be
effective and can cause comparable attack results compared
to existing shilling attack methods, showing its flexibility in
shilling attacks.

The remaining parts of this paper are organized as follows: Sec-
tion 2 provides the background knowledge of this work. We de-
scribes the details of SUI-Attack in Section 3. Experimental results
and analysis are presented in Section 4. Section 5 introduces the
related work of this study. Section 6 concludes this work.

2 BACKGROUND

In this section, we first provide some background knowledge of
shilling attack and the extremely restricted setting of shilling attack
(i.e., single-user injection) that we consider in this paper.

Attack Goal: There are two types of shilling attack: promotion
attack and nuke attack [18, 47]. Through injecting several fake user
profiles into the target RS (i.e., the victim RS), promotion attack

Chengzhi Huang and Hui Li

aims to improve the ranking of the target item in a user’s recom-
mendation list. The goal of nuke attack is opposite to promotion
attack and it can be easily achieved by reversing the goal of the
promotion attack. Hence, for simplicity, we focus on the promotion
attack in this paper.

After a successful shilling attack, the target item should appear
in as many users’ recommendation lists as possible while the overall
recommendation performance of the system is not affected [28]. In
addition to the traditional settings of shilling attack, in this paper,
we impose an extremely restricted constraint on shilling attack and
study the single-user-injection shilling attack: the attacker only
inject one fake user profile to spoof RS.

Attack Knowledge: We consider the most common setting of at-
tack knowledge used by the existing studies of shilling attack [9, 36].
The attackers do not have prior knowledge of the model architec-
ture of the victim RS. They cannot access the parameters of the
victim RS model as well as the gradients during training. However,
attackers can access the most basic user-item historical data of the
victim RS, i.e., user-item ratings. User-item ratings in many RS (e.g.,
Amazon) are publicly accessible and can be crawled by attackers.

Attack Capabilities: Typically, a more powerful shilling attack
requires injecting more fake user profiles, making the attack more
perceptible to the system. Therefore, the number of fake user pro-
files and the number of maximum interacted items in each fake
user profile are limited to byser and bisem (i-e., the budget), respec-
tively. Note that, in the setting of single-user injection studied in
this paper, byser is set to 1. However, we still report the case when
buser > 1 so that SUI-Attack can be compared to other shilling
attack methods in the traditional multi-user injection setting.

3 OUR METHOD SUI-ATTACK
In this section, we illustrate the details of our proposed SUI-Attack.

3.1 Overview

We model the single-user-injection attack as a node generation
process over the user-item bipartite graph. The target is to generate
a fake user node that can be used to guide the construction of
the fake user profile for injection. The user-item bipartite graph,
where each edge between a user node and an item node indicates an
historical user-item interaction and edge weights denote interaction
features like ratings, is commonly used to model RS.

SUI-Attack uses two phases, feature generation and edge gener-
ation, to generate the fake user profile, including its user features
and edges connecting the fake user and items on the bipartite graph,
for single-user-injection attack.

3.2 Feature Generation

User features (e.g., statistics of historical ratings), which are typi-
cally used to initialize the embedding layer in RS models, are an
important source for RS to model user preferences. Attackers can
also leverage user features to guide the construction of the fake
user profile. However, unlike real users, the fake user does not have
features as it does not have real interaction history. Feature genera-
tion phase aims to generate fake user’s node features with strong
toxicity that can guide the subsequent edge generation phase to

Single-User Injection for Invisible Shilling Attack against Recommender Systems

generate destructive user-item interactions for the fake user to hoax
RS. Note that user features in fake user profile construction are not
the same as user features modeled by the victim RS. The latter are
unacquirable for attackers as they cannot access the details of the
victim RS model.

3.2.1 Selection of Node Features. As different RS may have their
own designed user/item features, we choose to adopt 10 prevalent
RS features [41, 56] that rely on the intrinsic information of the
user-item bipartite graph and do not require specific user or item
information (e.g., user demographics and item descriptions). This
way, SUI-Attack is not limited to specific feature designs and can be
applied to different RS. The definitions of the ten chosen features
are as follows:

(1) Rating Deviation from Mean Agreement (RDMA) mea-
sures the average deviation of a user’s ratings from the mean
agreement for a set of target items:

[Fui—Fil

YieN(u) — M

RDMA,, = N
u

, (1)
where N, is the items that user u has rated, |Ny| is the
number of items in Ny, (i.e., profile size), M; is the number
of ratings received by the item i, r,,; denotes the ratings
given by user u on item i, and 7; denotes the mean rating of
item i. The reciprocal of the number of ratings for each item
(M;) is used as a weight since items with more ratings are
more likely to be rated accurately and the weights of their
deviations should be reduced.

(2) Length Variance (LengthVar): LengthVar measures the
variance of the number of interactions in a user’s profile (i.e.,
profile size) and it is defined as follows:

LengthVar,, = [Nul = [N , ()

ZjeU(|Nj| - |Nu|)2

where U indicates the user set in RS and |N| is the average
profile size in RS.

(3) Filler Mean Variance (FMV): FMV measures the deviation
of a user’s rating in a hypothesized filler partition from the
mean rating for each item. The hypothesized filler partition
contains randomly sampled items. We sample at most 50
items for each user profile as the hypothesized filler partition.
Then, FMV is defined as:

1
FMVy, = —— " (rui = 7)%, ®)
|Hu| ieH,

where Hy, is the hypothesized filler partition in the user
profile of u and |Hy,| indicates the number of items in Hy,.
(4) Filler Average Correlation (FAC) measures the correla-
tion between the rating of an item in the hypothesized filler
partition of a user profile and the item’s average rating:

YieH, (rui — i)

FAC, = @)

ZjeHu(ru,j - fj)z

(5) Mean Variance (MeanVar) calculates the average variance
between the items in the hypothesized filler partition and

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

their average ratings:

22
MeanVar, = —ZiEF" (rut — Fu) , (5)
|Ful
where F, contains all the items that user u did not give the
maximal rating score rmax. For example, rmax is 5 in a five-
scale rating system. 7, indicates the average rating of all
ratings given by u.
(6) Filler Mean Target Difference (FMTD) quantifies the dis-
crepancy between the maximal rating score rmax and rating
scores provided by user u that are not maximal:

ZiEMu T'max ZkeFu Tuk

FMTD,, = -
“ | My |Ful

, (6)

where M, indicates the items that u gave the maximal rating
SCOre rmax.

(7) Filler Size with Total Items (FSTI) is the percentage of a
user’ profile size over the number of items in the RS:
N,
FSTI, = ||1T|’ (7)

where I is the item set in RS.

(8) Filler Size with Popular Items in Itself (FSPII) is the
percentage of most popular items that a user has rated over
the profile size:

2ier, 11(u,0)
|Nul
where V), is the most popular items in RS and we define it as
the top 5% most popular items (with many interactions) in
RS. I3 (u, i) is 1 if user u has rated item i; otherwise 0.
(9) Filler Size with Maximum Rating in Itself (FSMAXRI)

indicates the percentage of the times that a user u gave the
maximal rating score over u’s profile size:

FSPII, = ®)

; Io(ryi, n
FSMAXRI,, = ZzENu (u,i max)
INul

where the indicator Ip(ry, i, rmax) is 1 if r,,,; equals rmax; oth-
erwise 0.

(10) Filler Size with Average Rating in Itself (FSARI) indi-
cates the percentage of the times that a user u gave the
average rating score over u’s profile size:

, ©)

FSARL,, = Yier 3(ru,i, ravg) (10)
| Ny |
where rayg is the global average score in RS. The indicator
I3(ru,i, ravg) is 1 if the floor or the ceiling of rayg equals ry;;
otherwise 0.

Note that, although we illustrate the definitions of the selected
features from user side, they can be used as both user features and
item features. Based on the selected features, for each user/item,
we construct a normalized 10-dimensional feature vector x.

3.2.2 Generate Toxic Fake User Features. Given features of real
users and items, the next step is to generate toxic fake user features
that can guide the edge generation to fill the fake user profile with
user-item interaction data. To this end, SUI-Attack adopts the idea of
reconstruction: train a graph encoder by predicting the features of

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

some masked real users and items, and then use the graph encoder
to predict the features of the fake user.

Specifically, SUI-Attack first maps features of real users and
items into high dimensional representation spaces via a two-layer
feedforward neural network:

p = W3 - LeakyRELU(W1x), (11)

where x is the feature vector of a user or an item, W1 and W3 are
trainable parameters.

Then, SUI-Attack uses a multi-relation graph convolution layer
to aggregate information of neighboring nodes and update repre-
sentations for each user in the user-item bipartite graph:

2 W,p
ryryo
qQu = T

; Z)E%(u) Nr ()] - INr(0)]
hy, = LeakyRELU(W - LeakyRELU(qy))

(12)

where N (u) indicates the neighboring node of u w.r.t. to edge
type r and there are two types of edges (user—item edges and
item—user edges). SUI-Attack uses a similar aggregation process
for updating item representations.

Next, SUI-Attack randomly masks some real user and item nodes
and reconstructs the masked features. SUI-Attack uses a two-layer
MLP for the feature reconstruction:

2 =W . o(Wirep), (13)

where Wirec) and Wgrec) are trainable parameters. Suppose that
the masked user set is Uy, and the masked item node set is V;;,, the
following reconstruction loss is used for feature reconstruction:

1 N 1 N
Lrecon = 151) I =Rl P+ 1 D o = ol P, (14)

uelU,, vEV,

where x;, is the features of user u € Uy, and Xy, is the reconstructed
features of u. Similar notations x, and %, are used for reconstructing
item features.

Through reconstruction, the graph encoder is empowered by
the capability to encode topological and feature information of the
bipartite graph containing real users and items, and it can be used to
generate features for the fake user. We initialize the feature vector
x, of the fake user z’ as zero vector and use SUI-Attack to predict
%X, (Equation 13) as fake user features. However, the generated
features for the fake user do not convey toxicity and cannot guide
the edge generation to fulfill the attack goal. Therefore, we further
adopt the idea of influence functions [25], a classic technique from
robust statistics [10] that has shown promising results in determin-
ing the importance of a training sample in RS [58], to endow the
generated features of the fake user with destructive power.

To be specific, influence functions show how the model parame-
ters change as we upweight a training sample by an infinitesimal
amount. For a training sample z, if it is upweighted by a small value
€, the changed parameter ée,z can be defined as:

5 def 1
be.. = argmén;;.ERs(zi, 0) + eLxs(z,0), (15)

where L(-)rs indicates the training loss of RS and n is the number
of samples. Then, the influence of upwerighting z on the parameter

Chengzhi Huang and Hui Li

is given by:

def do : _ N
Tupparams(2) = —=Fleso = ~H;'VoLrs(z.6), (16)
where Hé_l = % >ty VoLrs(z, 0) is the Hessian matrix of Lgs.
Based on Eq. 16, Koh and Liang [25] derivate that the influence of
upweighting z on a test sample ztest has a closed-form expression:

Iup,loss(Z, ztest) = VoL (ztest, é)THgIVHLRS(Z: é) (17)

We use Equation 17 to pre-compute the influence scores of all
real users. We then use a three-layer feedforward neural network
as an influence predictor IP(-). Given the feature vector x, of a real
user z, the influence predictor is trained to predict the influence
score of z by minimizing the gap (mean squared error) between the
true influence score and the predicted influence score.

In summary, the optimization objective for generating toxic fake
user features can be formulated as:

Lfeat = Lrecon — IP(xz). (18)

Minimizing the loss function in Equation 18 trains SUI-Attack to
reconstruct node features more accurately and maximizing the
influence of the fake user z’ at the same time.

3.3 Edge Generation

An essential step in contemporary shilling attack approaches is
filling the fake user profile with interaction history. This step is
equivalent to connecting the fake user node with items in the user-
item bipartite graph which ensures the fake user profile can affect
the recommendation of the RS on the target item.

Specifically, we use the generated features of the fake user profile
to guide the generation of edges. We first project the predicted fake
user features (Equation 11) and the features of candidate items (i.e.,
the ten selected RS features) through a single layer feedforward
neural network in order to project them to the same space:

qz = wedgeﬁz’a qj = Wedgexj (19)

where Wegge is trainable parameters and j is a candidate item. We
choose the 2-hop item neighbors of the target item as the candi-
date items. Candidate items and the target item were interacted by
same real users in the past. According to the idea of co-visitation
attack [61], these candidate items can affect whether the target item
can be recommended after shilling attack. To avoid being easily
detected, we additionally add s sampled popular items into the
candidate set.

Then, we calculate the probability of connecting the fake user to
each candidate item by measuring the the cosine similarity between
q’ and q;. The resulting probability distribution o € Rbitem contains
probabilities of all the candidate items. Next, our target is to choose
top-bitem candidate items with the highest probabilities. To address
the discretization issue of the network, we employ the Gumbel-
Top-K technique. It is an extension of the Gumbel-Max trick for
sampling from a categorical distribution. The Gumbel-Max trick is
a method that adds independent and identically distributed (i.i.d.)
Gumbel noise to the log-probabilities of each category and selects
the category with the highest sum of log-probability and Gumbel
noise [13, 22]. The Gumbel-Top-k trick extends this method to

Single-User Injection for Invisible Shilling Attack against Recommender Systems

sample k elements without replacement. For ¢ ~ Uniform(0, 1),
Gumbel-Softmax is defined as:
exp((10g(0;)+9i))

Gumble-Softmax(o0); = (20)

5., exp(lEC 9
where m is the size of the candidate item set. where the parameter
7 > 0 represents the annealing factor that determines how close
the output result is to the one-hot form. A smaller 7 value leads to
a more one-hot-like output, but may cause a more severe gradient
vanishing problem. o; is the i-th dimension in 0. The Gumbel dis-
tribution g; = —log(—log ¢;) and it brings exploration to the edge
selection process. And we can further use « to control the strength
of exploration:

exp((10g(0i2+a<g,—))

Gumble-Softmax(o, €); =

o,
The Gumbel-Top-K function for edge generation can be formulated
as follow:

bitem

G(o) = Z Gumble-Softmax (o © mask;, a);, (22)

i=1
where mask; filters out the selected edges so that they are not cho-
sen again in subsequent iterations. Note that the resulting vector
is sharp but not strictly discrete, which facilitates the training pro-
cess [51]. In the test phase, we enforce a hard threshold e on the
vector to choose edges that connect to the fake user.

3.4 Optimization
We inject the generated fake user node into the user-item bipartite

graph to launch shilling attacks. We design the following attack loss
to endow the generated fake user with strong destructive power:

4 exp(ru,)
Lago(X,0) ==) log(e—————=), (23)
aae u;bl 2ijer exp(ruj)
where t indicates the target item. Equation 23 shows the attack goal
of promotion shilling attack: hoax RS and mislead RS to rank the
target item higher than other items when making recommendation.
In summary, the complete objective of SUI-Attack is:

L = Lagy + Lteat = Ladv + Lrecon — IP(xz). (24)

And SUI-Attack can be optimized using gradient descent based
methods like Adam [24]. When the optimization of SUI-Attack
finishes, we can construct a fake user in the victim RS and fill
the fake user profile with some user-item interactions guided by
the generated edges from SUI-Attack. Then, the victim RS will
be affected by the injected fake user and the attack goal can be
achieved.

4 EXPERIMENT

In this section, we present the experimental results and analysis.

4.1 Experimental Settings

4.1.1 Dataset. To demonstrate the effectiveness of our method, we
conducted experiments on three public datasets Automotive!, Tools

Uhttps://github.com/XMUDM)/ShillingAttack

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Table 1: Statistics of datasets

Dataset Users Items Interactions Sparsity
Automotive 2,928 1,835 20,473 99.62%

T & HI 1,208 8,491 28,396 99.72%

Last.fm 1,892 12,523 186,479 99.21%

& Home Improvement (T & HI)! and Last.fm? that are widely used
in previous studies of shilling attacks and RS [7, 36, 37]. Table 1
provides the statistics of the data. We randomly choose 5 items
from each dataset as the target items.

4.1.2 Baselines. We compare SUI-Attack with traditional shilling
attack methods Random Attack [5], Bandwagon Attack [4] and Seg-
ment Attack [5], and state-of-the-art deep learning based methods,
including TrialAttack [58], AUSH [36] and LegUP [37]. We use the
implementation® provided by the original authors for TrialAttack.
For other methods, we use the implementations! provided by Lin
et al. [37]. We follow the recommended settings of each method.

4.1.3 Victim RS. We conduct shilling attacks against prevalent
RS including traditional recommendation models (ItemCF [43]
and WMF [21]) and deep learning based recommendation models
(NGCF [55], VAE [35], ItemAE [44], LightGCN [19] and NCF [20]).
We refer to their original papers for parameter settings.

4.14 Evaluation Metric. We adopt Hit Ratio (HR@k), a metric that
is widely used to evaluate the performance of shilling attack [58]. It
indicates the fraction of users for whom the top-k recommendation
list after the attack contains the target item. We set k to 50 in our
experiments.

4.1.5 Parameter Settings. In feature generation, we randomly mask
10% of nodes for recovery, the candidate items are 2-hop neigh-
boring items of the target item and the 5% items (i.e., s) sampled
from the top 10% popular items in the RS. In edge generation, we
set e = 0.85 to choose the edges that connect to the fake user.
In addition to testing the performance when injecting only one
fake user, we also analyze the results when multiple fake users
are injected into the RS so that SUI-Attack can be compared to
contemporary shilling attack methods, and we set the number of
fake users (byser) to 50 in multi-user injection. Fake user(s) in both
single-user injection and multi-user injection connect to 50 (b;rem)
items at most. We set the training epoch to 64 and batch size to 32.
The learning rate is set to 5e-4 and we adopt cosine decay learning
rate scheduler. We use gradient normalization and the max norm
is set to 1.0. For the graph encoder, we apply a dropout layer to
the input of a GCN layer with a dropout rate of 0.5. The hidden
size of the graph encoder is set to 250. We select LeakyReLU as the
non-linear activate function with the negative slope being 0.1.

4.2 Performance of Shilling Attack

Table 2 presents the results of our method and the baseline models,
and the best results are shown in bold. The value on the left side
of the slash indicates HR@50 of single-user injection using each
method. For single-user injection, baselines are modified to inject

Zhttps://grouplens.org/datasets/hetrec-2011
Shttps://github.com/usteml/Trial Attack

https://github.com/XMUDM/ShillingAttack
https://grouplens.org/datasets/hetrec-2011
https://github.com/ustcml/TrialAttack

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Chengzhi Huang and Hui Li

Table 2: Attack performance (HR@50) of different attack methods against different victim RS. The left side of the slash is the
attack performance for single-user injection, and the right side is the attack performance for multi-user injection. Best results

of single-user injection and multi-user injection are shown in bold.

Dataset Victim RS Shilling Attack Methods

Random Segment Bandwagon TrialAttack AUSH LegUP SUI-Attack ratio 1 ratio2 ratio3 ratio4

ItemCF 0.010/0.207 0.000/0.126 0.000/0.122 0.042/0.295 0.012/0.172 0.040/0.253 0.194/0.262 0.658 4.620 0.740 0.888

WMF 0.000/0.063 0.000/0.020 0.000/0.024 0.000/0.081 0.004/0.046 0.000/0.050 0.007/0.062 0.086 1.750 0.113 0.765

NGCF 0.001/0.093 0.001/0.090 0.001/0.102 0.000/0.071 0.002/0.090 0.000/0.101 0.076/0.092 0.745 38.00 0.826 0.902

T & HI VAE 0.203/0.762 0.174/0.826 0.000/0.811 0.103/0.992 0.241/0.962 0.227/0.931 0.636/0.937 0.641 2.639 0.679 0.945
ItemAE 0.014/0.234 0.001/0.143 0.000/0.174 0.004/0.281 0.082/0.145 0.002/0.268 0.168/0.192 0.598 2.049 0.875 0.683

LightGCN | 0.000/0.027 0.000/0.048 0.000/0.151 0.000/0.039 0.000/0.053 0.000/0.037 0.023/0.034 0.433 +00 0.676 0.225

NCF 0.301/0.883 0.193/0.717 0.163/0.783 0.265/0.690 0.317/0.804 0.187/0.824 0.481/0.862 0.545 1.517 0.545 0.976

ItemCF 0.000/0.201 0.002/0.112 0.000/0.109 0.003/0.211 0.003/0.191 0.012/0.227 0.117/0.208 0.555 9.750 0.563 0.916

WMF 0.001/0.104 0.010/0.090 0.010/0.163 0.095/0.201 0.020/0.182 0.012/0.155 0.118/0.192 0.587 1.242 0.615 0.955

NGCF 0.084/0.382 0.067/0.287 0.051/0.248 0.145/0.451 0.102/0.414 0.094/0.414 0.092/0.447 0.204 0.634 0.206 0.991

Last.FM VAE 0.132/0.441 0.117/0.372 0.163/0.215 0.128/0.768 0.192/0.537 0.118/0.854 0.494/0.683 0.578 2.573 0.578 0.800
ItemAE 0.029/0.174 0.010/0.027 0.000/0.084 0.004/0.166 0.002/0.157 0.000/0.147 0.087/0.162 0.524 3.000 0.537 0.931

LightGCN | 0.075/0.182 0.010/0.167 0.020/0.138 ~ 0.076/0.314 0.091/0.382 0.083/0.403 0.266/0.376 0.660 2.923 0.707 0.933

NCF 0.275/0.541 0.208/0.462 0.164/0.491 0.197/0.827 0.262/0.862 0.232/0.817 0.477/0.835 0.553 1.735 0.571 0.969

ItemCF 0.042/0.201 0.018/0.184 0.000/0.154 0.066/0.324 0.067/0.297 0.087/0.313 0.204/0.307 0.630 2.345 0.664 0.948

WMF 0.019/0.286 0.027/0.439 0.000/0.337 0.082/0.294 0.044/0.438 0.018/0.398 0.213/0.441 0.483 2.598 0.483 1.005

NGCF 0.010/0.124 0.000/0.145 0.001/0.119 0.000/0.096 0.051/0.148 0.104/0.140 0.087/0.123 0.588 0.836 0.707 0.831

Automotive VAE 0.030/0.073 0.010/0.103 0.000/0.096 0.010/0.084 0.010/0.172 0.082/0.117 0.091/0.125 0.529 1.110 0.728 0.727
ItemAE 0.020/0.320 0.010/0.176 0.002/0.208 0.020/0.321 0.008/0.311 0.091/0.310 0.255/0.322 0.792 2.802 0.792 1.003

LightGCN | 0.001/0.141 0.002/0.136 0.000/0.137 0.025/0.184 0.018/0.152 0.047/0.188 0.162/0.191 0.849 3.447 0.848 1.016

NCF 0.082/0.503 0.070/0.515 0.002/0.544 0.112/0.808 0.104/0.762 0.142/0.774 0.376/0.811 0.464 2.648 0.464 1.004

only one fake user. We also list the results of multi-user injection in
the right side of the slash for a comparison. We provide four types
of ratio in Table 2 for better illustrating the results:

(1) Ratio 1 indicates the percentage of the performance of SUI-
Attack in single-user injection over the performance of the
best baseline in multi-user injection. For example, the ratio
1 for ItemCF on T & HI is 0.194/0.295=0.658.

(2) Ratio 2 represents the percentage of the single-user-injection
performance of SUI-Attack over the single-user-injection
performance of the best baseline. For example, the ratio 2
for ItemCF on T & HI is 0.194/0.042=4.620.

(3) Ratio 3 shows the percentage of single-user-injection perfor-
mance over multi-user-injection performance of SUI-Attack.
For example, the ratio 3 for ItemCF on T & HI is 0.194/0.262=0.740.

(4) Ratio 4 is the percentage of the performance of SUI-Attack
in multi-user injection over the performance of the best
baseline in multi-user injection. For example, the ratio 4 for
ItemCF on T & HI is 0.262/0.295=0.888.

From Table 2, we have the following findings:

(1) Considering ratio 1, we can also see that SUI-Attack which
injects only one fake user can generally achieve at least
half of the attack performance of the best baseline in multi-
user injection, and in some cases ratio 1 can even exceed
0.7. The observation is encouraging and we find that even
injecting only one fake user can severely mislead the RS to
recommend the target item. Hence, for some RS where defense
mechanisms are deployed, SUI-Attack can effectively affect
the RS without causing alarm.

From ratio 2 shown in Table 2, we can observe that, in almost
all cases, SUI-Attack outperforms baselines by a large margin

@

for single-user injection, suggesting the superiority of SUI-
Attack in single-user injection. The results also demonstrate
that shilling attack methods without tailored designs for
single-user injection cannot function well in this challenging
setting.

(3) When more fake users are injected, we can find that the
attack performance of SUI-Attack increases (see ratio 3 in Ta-
ble 2) and SUI-Attack can achieve comparable or even better
performance than contemporary shilling attacks (see ratio 4
in Table 2). Therefore, SUI-Attack, which is not specifically
designed for the traditional shilling attack setting, can work
well in multi-user injection, indicating its high flexibility.

4.3 Attack Invisibility

Compared to other shilling attack methods, SUI-Attack should be
most difficult to detect as it only injects one fake user, the minimum
injection for shilling attack, into the victim RS. Still, we investigate
the invisibility of SUI-Attack following the study method used by
existing shilling attack works [36, 37, 64] in this section.

4.3.1 Attack Detection. We use an unsupervised attack detector [71]
to identify the fake user profiles generated by different attack mod-
els and report the precision and recall on Automotive in Figure 1.
Since single-user injection is too difficult to detect, we report the
detection results of multi-user injection for SUI-Attack. Lower pre-
cision and recall imply that the attack method is more imperceptible.
The results show that, compared to other attack methods, it is more
difficult to detect the fake users generated by SUI-Attack.

4.3.2 Fake User Distribution. To further study the invisibility of
SUI-Attack, we visualize the users’ representations using the t-SNE
projection [52]. Note that we visualize the representation space in
the multi-user injection as it is meaningless to visualize a single

Single-User Injection for Invisible Shilling Attack against Recommender Systems

0.09
0.08 j
0.07
0.06 -
0.05 A
0.04
0.03 ? i i

0.02

0.01 % ?

t
fando“‘segme:a“dwa9°“h“5““,-‘a\px‘a°\\‘_e9'“95“\.l\“’d‘

@

(a) Precision

0.07 4

0.06
0.05 1

0.04 4

oo g
T

0.01 4

o ptteeg VP | perack

o n
nd° egﬂ\e“ wa9°“w5 Sut-

(b) Recall

Figure 1: Attack detection of injected profiles on Automotive.
Lower value suggests a better attack model.

fake user and many real users in single-user injection for checking
whether they are different. Figure 2 provides the visualization of
users’ representations generated by WMF after it is attacked by
SUI-Attack. We can observe that fake users are scattered among
real users in the representation space and it is hard for detectors
to distinguish fake and real users, suggesting that SUI-Attack can
launch virtually invisible attacks.

4.4 Ablation Study

Finally, we discuss the impact of different parts of SUI-Attack on
the attack performance by conducting ablation experiments. Recall
that our method mainly consists of two parts: feature generation
and edge generation. The feature generation process also includes
the influence function. Therefore, our ablation study involves three
variants of SUI-Attack:

(1) Replacing feature generation with random feature gen-
eration: Randomly generated fake user features in SUI-
Attack.

(2) Replacing edge generation with random edge genera-
tion: In edge generation, randomly connect the fake user
node to other item nodes.

(3) Removing the influence function: It does not use the
influence function to guide the generation of toxic fake user
features.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

(a) Last.fm

(b) Automotive

Figure 2: Real and fake user profiles in the latent space. Or-
ange nodes represent injected fake users and other nodes are
real users.

0.8

0.7

0.6

| I
.4 I
0

ction Sul- _Attack

o

o
@

o
o

o

dom Feati™® | dom Ed9® ve Influence Fun

Ran

Figure 3: Ablation study.

Figure 3 shows the performance of the three variants of SUI-Attack
compared to the performance of the complete SUI-Attack on Au-
tomotive. We can clearly see that the three variants show worse
attack performance than SUI-Attack. Hence, we can conclude that
each part in SUI-Attack contributes to its attack performance.

5 RELATED WORK

In this section, we introduce several directions that are closely
related to this work.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

5.1 Recommender Systems (RS)

The research on RS has a long history [1]. Traditional RS typically
relies on collaborative filtering (CF) methods, especially matrix
factorization (MF) [46], where user preferences and item proper-
ties are factorized from the user-item interaction matrix into two
low-dimensional latent matrices. Due to its effectiveness on large-
scale data [29], MF has been successfully deployed in practice. The
cold-start problem (i.e., data sparsity), where historical data is not
available for new users or items, is one of the most challenging
issues in recommender systems [1]. To alleviate this problem, ad-
ditional context features (e.g., social network [33, 34], user group-
ing data [12, 32], locations [38], sequential data [31], and review
text [54]) are incorporated into MF.

Recently, the success of deep learning has inspired researchers
to deploy deep learning in RS [59]. Various prevalent deep learning
techniques have been applied in RS. For instance, RecSeats [40]
adopts Convolutional Neural Network (CNN) in seat recommenda-
tion, Zhou et al. [72] uses Multilayer Perceptron (MLP) to enhance
recommendation, Zhang et al. [70] deploy Recurrent Neural Net-
work (RNN) to capture the local/global sessions within sequences
for CTR prediction, Wang et al. [53] leverage Generative Adversar-
ial Network (GAN) [17] in cross-domain recommendation, and Li et
al. [30] harness Graph Neural Network (GNN) to model social rec-
ommendation. The use of deep learning methods has significantly
improved the quality of recommendation [67].

Due to the importance of RS for guiding users towards making
decisions, RS have attracted unscrupulous parties and there exist
various types of attacks against RS in the literature, including unor-
ganized malicious attacks (i.e., several attackers individually attack
RS without an organizer) [42], sybil attacks (i.e., attacker illegally
infers a user’s preference) [6], shilling attack, etc.

5.2 Shilling Attack against RS

In the literature, shilling attack is also called as data poisoning
attack [8, 28] or profile injection attack [5]. In experiments, previous
works have successfully performed shilling attacks against real-
world RS such as YouTube, Google Search, Amazon and Yelp [60, 61].
Sony, Amazon and eBay have also reported that they suffered from
shilling attacks [27].

Pioneering shilling attack methods mainly rely on heuristics and
data statistics. Lam and Riedl [27], Burke et al. [4, 5] and Mobasher
et al. [39] propose several heuristic based shilling attack approaches
to promote an item (e.g., Random, Average, Bandwagon and Seg-
ment Attacks) or demote an item (e.g., Love/Hate Attacks and Re-
verse Bandwagon Attacks) for both rating prediction and top-K
recommendation. Wilson and Seminario [45, 57] propose power
user attack and power item attack which leverage most influential
users/items to hoax RS. Fang et al. [15] study shilling attack meth-
ods to spoof graph based RS. Li et al. [28] present shilling attack
method against factorization based RS. Xing et al. [60] and Yang
et al. [61] conduct experiments on attacking real-world RS (e.g.,
YouTube and Amazon), and the results show that attacking RS is
possible in practice.

Recently, there is a surge of works on adversarial attack against
text and image based learning systems [62, 68] and they show that,
crafted adversarial examples, which may be imperceptible, can lead

Chengzhi Huang and Hui Li

to unexpected mistakes of machine learning based systems. Based
on the idea of adversarial attack, a great number of shilling attack
approaches have sprung up. Optimization based methods [28, 50,
66] model shilling attacks as an optimization task and then design
optimization strategies to solve it. GAN based methods [9, 36, 37,
58, 69] use GAN to construct fake user profiles. Reinforcement
learning based methods [14, 48, 65] query the RS to get feedback
on the attack. Then, they use Reinforcement Learning (RL) [23]
to adjust the injection. Knowledge distillation based methods [63]
and pre-training based methods [64] are designed to reduce the
requirement of prior knowledge and improve the practicality of
shilling attack.

Although many shilling attack methods exist, they all adopt
the same attack paradigm, i.e., multi-user injection. None of them
consider the extremely limited scenario, single-user injection, that
studied in this work.

5.3 Adversarial Attacks in the Extremely
Limited Scenarios

The idea of attacking a machine learning model by altering only
one element of the input was first proposed in computer vision
domain. Su et al [49] propose one-pixel attack and show that it can
achieve high success rate when changing just one pixel to make the
image misclassified by image classification algorithms. This work
initiates the discussion of adversarial learning in extremely limited
scenarios [2, 26]. Recently, Finkelshtein et al. [16] and Tao et al. [51]
extend this idea to adversarial learning in graph representation
learning. Finkelshtein et al. [16] shows that GNNs can be fooled by
only slightly perturbing the features or the neighbor list of a single
arbitrary node. The attack is effective even when the attacker cannot
choose which node to perturb, and even when GNNs are trained
with robust optimization techniques. Tao et al. [51] demonstrate
that GNNs can be misled by a single injected node to misclassify
the target node (i.e., single-node injection attack).

6 CONCLUSION

In this paper, we investigate a challenging scenario of shilling attack
where only one fake user is injected into RS to launch the attack.
We reformulate the shilling attack problem as a node generation
task over the user-item bipartite graph of RS, which enables us to
leverage more information in RS to construct the fake user profile.
We propose SUI-Attack, the first shilling attack method that can be
used in single-user injection. Experiments show that SUI-Attack can
achieve promising attack results in single-user injection. Moreover,
in the traditional multi-user injection setting, SUI-Attack is shown
to be effective and can cause comparable attack results compared to
existing shilling attack methods, showing its flexibility in shilling
attacks. In the future, we will explore the underlying mechanism of
the successful attack with a single injected node and try to design
defense strategies against our SUI-Attack.

ACKNOWLEDGMENTS

This work was partially supported by National Key R&D Program of
China (No. 2022ZD0118201), National Natural Science Foundation
of China (No. 62002303, 42171456), and Natural Science Foundation
of Fujian Province of China (No. 2020J05001).

=

Single-User Injection for Invisible Shilling Attack against Recommender Systems

REFERENCES

Charu C. Aggarwal. 2016. Recommender Systems - The Textbook. Springer.
Naveed Akhtar and Ajmal S. Mian. 2018. Threat of Adversarial Attacks on Deep
Learning in Computer Vision: A Survey. IEEE Access 6 (2018), 14410-14430.

Al Borchers, Jonathan L. Herlocker, and John Riedl. 1998. Ganging up on Infor-
mation Overload. Computer 31, 4 (1998), 106-108.

Robin Burke, Bamshad Mobasher, and Runa Bhaumik. 2005. Limited Knowledge
Shilling Attacks in Collaborative Filtering Systems. In ITWP@IJCAL

Robin D. Burke, Bamshad Mobasher, Runa Bhaumik, and Chad Williams. 2005.
Segment-Based Injection Attacks against Collaborative Filtering Recommender
Systems. In ICDM. 577-580.

Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Edward W. Felten, and
Vitaly Shmatikov. 2011. “You Might Also Like:” Privacy Risks of Collaborative
Filtering. In IEEE Symposium on Security and Privacy. 231-246.

Ivan Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2011. Second workshop on
information heterogeneity and fusion in recommender systems (HetRec2011). In
RecSys. 387-388.

Huiyuan Chen and Jing Li. 2019. Data Poisoning Attacks on Cross-domain
Recommendation. In CIKM. 2177-2180.

Konstantina Christakopoulou and Arindam Banerjee. 2019. Adversarial attacks
on an oblivious recommender. In RecSys. 322-330.

R Dennis Cook and Sanford Weisberg. 1980. Characterizations of an empirical
influence function for detecting influential cases in regression. Technometrics 22,
4 (1980), 495-508.

Yashar Deldjoo, Tommaso Di Noia, and Felice Antonio Merra. 2022. A Sur-
vey on Adversarial Recommender Systems: From Attack/Defense Strategies to
Generative Adversarial Networks. ACM Comput. Surv. 54, 2 (2022), 35:1-35:38.
Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient Fault-
Tolerant Group Recommendation Using alpha-beta-core. In CIKM. 2047-2050.
Pavlos S. Efraimidis and Paul G. Spirakis. 2006. Weighted random sampling with
areservoir. Inf. Process. Lett. 97, 5 (2006), 181-185.

Wengqi Fan, Tyler Derr, Xiangyu Zhao, Yao Ma, Hui Liu, Jianping Wang, Jiliang
Tang, and Qing Li. 2021. Attacking Black-box Recommendations via Copying
Cross-domain User Profiles. In ICDE. 1583-1594.

Minghong Fang, Guolei Yang, Neil Zhengiang Gong, and Jia Liu. 2018. Poisoning
Attacks to Graph-Based Recommender Systems. In ACSAC. 381-392.

Ben Finkelshtein, Chaim Baskin, Evgenii Zheltonozhskii, and Uri Alon. 2022.
Single-node attacks for fooling graph neural networks. Neurocomputing 513
(2022), 1-12.

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. 2672-2680.

Thsan Gunes, Cihan Kaleli, Alper Bilge, and Huseyin Polat. 2014. Shilling attacks
against recommender systems: a comprehensive survey. Artif. Intell. Rev. 42, 4
(2014), 767-799.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR. 639-648.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. 173-182.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In ICDM. 263-272.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with
Gumbel-Softmax. In ICLR (Poster). https://openreview.net/pdf?id=rkE3y85ee
Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Rein-
forcement Learning: A Survey. . Artif. Intell. Res. 4 (1996), 237-285.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR (Poster). https://arxiv.org/abs/1412.6980

Pang Wei Koh and Percy Liang. 2017. Understanding Black-box Predictions via
Influence Functions. In ICML, Vol. 70. 1885-1894.

David Kiigler, Alexander Distergoft, Arjan Kuijper, and Anirban Mukhopad-
hyay. 2018. Exploring Adversarial Examples - Patterns of One-Pixel Attacks. In
MLCN/DLF/iMIMIC@MICCAL, Vol. 11038. 70-78.

Shyong K. Lam and John Riedl. 2004. Shilling recommender systems for fun and
profit. In WWW. 393-402.

Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. 2016. Data Poisoning
Attacks on Factorization-Based Collaborative Filtering. In NIPS. 1885-1893.
Hui Li, Tsz Nam Chan, Man Lung Yiu, and Nikos Mamoulis. 2017. FEXIPRO:
Fast and Exact Inner Product Retrieval in Recommender Systems. In SIGMOD
Conference. 835-850.

Hui Li, Lianyun Li, Guipeng Xv, Chen Lin, Ke Li, and Bingchuan Jiang. 2022.
SPEX: A Generic Framework for Enhancing Neural Social Recommendation.
ACM Trans. Inf. Syst. 40, 2 (2022), 37:1-37:33.

Hui Li, Ye Liu, Nikos Mamoulis, and David S. Rosenblum. 2020. Translation-Based
Sequential Recommendation for Complex Users on Sparse Data. IEEE Trans.
Knowl. Data Eng. 32, 8 (2020), 1639-1651.

Hui Li, Yu Liu, Yuqiu Qian, Nikos Mamoulis, Wenting Tu, and David W. Cheung.

2019. HHMF: hidden hierarchical matrix factorization for recommender systems.

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

Data Min. Knowl. Discov. 33, 6 (2019), 1548-1582.

Hui Li, Dingming Wu, and Nikos Mamoulis. 2014. A revisit to social network-
based recommender systems. In SIGIR. 1239-1242.

Hui Li, Dingming Wu, Wenbin Tang, and Nikos Mamoulis. 2015. Overlapping
Community Regularization for Rating Prediction in Social Recommender Systems.
In RecSys. 27-34.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW. 689-698.

Chen Lin, Si Chen, Hui Li, Yanghua Xiao, Lianyun Li, and Qian Yang. 2020.
Attacking Recommender Systems with Augmented User Profiles. In CIKM. 855-
864.

Chen Lin, Si Chen, Meifang Zeng, Sheng Zhang, Min Gao, and Hui Li. 2022.
Shilling Black-box Recommender Systems by Learning to Generate Fake User
Profiles. arXiv Preprint (2022). https://arxiv.org/pdf/2206.11433.pdf

Ziyu Lu, Hui Li, Nikos Mamoulis, and David W. Cheung. 2017. HBGG: a Hi-
erarchical Bayesian Geographical Model for Group Recommendation. In SDM.
372-380.

Bamshad Mobasher, Robin D. Burke, Runa Bhaumik, and Chad Williams. 2007.
Toward trustworthy recommender systems: An analysis of attack models and
algorithm robustness. ACM Trans. Internet Techn. 7, 4 (2007), 23.

Théo Moins, Daniel Aloise, and Simon J. Blanchard. 2020. RecSeats: A Hybrid
Convolutional Neural Network Choice Model for Seat Recommendations at
Reserved Seating Venues. In RecSys. 309-317.

Mohammad Amin Morid, Mehdi Shajari, and Ali Reza Hashemi. 2014. Defending
recommender systems by influence analysis. Inf. Retr. 17, 2 (2014), 137-152.
Ming Pang, Wei Gao, Min Tao, and Zhi-Hua Zhou. 2018. Unorganized Malicious
Attacks Detection. In NeurIPS. 6976-6985.

Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001.
Item-based collaborative filtering recommendation algorithms. In WWW. 285-
295.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
AutoRec: Autoencoders Meet Collaborative Filtering. In WWW (Companion
Volume). 111-112.

Carlos E. Seminario and David C. Wilson. 2014. Attacking item-based recom-
mender systems with power items. In RecSys. 57-64.

Yue Shi, Martha Larson, and Alan Hanjalic. 2014. Collaborative Filtering beyond
the User-Item Matrix: A Survey of the State of the Art and Future Challenges.
ACM Comput. Surv. 47, 1 (2014), 3:1-3:45.

Mingdan Si and Qingshan Li. 2020. Shilling attacks against collaborative recom-
mender systems: a review. Artif. Intell. Rev. 53, 1 (2020), 291-319.

Junshuai Song, Zhao Li, Zehong Hu, Yucheng Wu, Zhenpeng Li, Jian Li, and Jun
Gao. 2020. PoisonRec: An Adaptive Data Poisoning Framework for Attacking
Black-box Recommender Systems. In ICDE. 157-168.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. 2019. One Pixel
Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 23, 5 (2019),
828-841.

Jiaxi Tang, Hongyi Wen, and Ke Wang. 2020. Revisiting Adversarially Learned
Injection Attacks Against Recommender Systems. In RecSys. 318-327.
Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and Xueqi Cheng.
2021. Single Node Injection Attack against Graph Neural Networks. In CIKM.
1794-1803.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. J. Mach. Learn. Res. 9 (2008), 2579-2605.

Cheng Wang, Mathias Niepert, and Hui Li. 2018. LRMM: Learning to Recommend
with Missing Modalities. In EMNLP. 3360-3370.

Cheng Wang, Mathias Niepert, and Hui Li. 2020. RecSys-DAN: Discriminative
Adversarial Networks for Cross-Domain Recommender Systems. IEEE Trans.
Neural Networks Learn. Syst. 31, 8 (2020), 2731-2740.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural Graph Collaborative Filtering. In SIGIR. 165-174.

Chad Williams, Bamshad Mobasher, and Robin D. Burke. 2007. Defending rec-
ommender systems: detection of profile injection attacks. Serv. Oriented Comput.
Appl. 1, 3 (2007), 157-170.

David C. Wilson and Carlos E. Seminario. 2013. When power users attack:
assessing impacts in collaborative recommender systems. In RecSys. 427-430.
Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, and Enhong Chen. 2021. Triple
Adversarial Learning for Influence based Poisoning Attack in Recommender
Systems. In KDD. 1830-1840.

Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, and Meng Wang. 2023. A Survey
on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to
Information-Rich Recommendation. IEEE Trans. Knowl. Data Eng. 35, 5 (2023),
4425-4445.

Xinyu Xing, Wei Meng, Dan Doozan, Alex C. Snoeren, Nick Feamster, and Wenke
Lee. 2013. Take This Personally: Pollution Attacks on Personalized Services. In
USENIX Security Symposium. 671-686.

Guolei Yang, Neil Zhengiang Gong, and Ying Cai. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems. In NDSS.

https://openreview.net/pdf?id=rkE3y85ee
https://arxiv.org/abs/1412.6980
https://arxiv.org/pdf/2206.11433.pdf

CIKM °23, October 21-25, 2023, Birmingham, United Kingdom

[62] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial Examples:
Attacks and Defenses for Deep Learning. IEEE Trans. Neural Networks Learn.
Syst. 30, 9 (2019), 2805-2824.

[63] Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian J. McAuley. 2021. Black-Box

Attacks on Sequential Recommenders via Data-Free Model Extraction. In RecSys.

44-54.
[64] Meifang Zeng, Ke Li, Bingchuan Jiang, Liujuan Cao, and Hui Li. 2023. Practical
Cross-System Shilling Attacks with Limited Access to Data. In AAAIL 4864-4874.
Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. 2020. Practical Data
Poisoning Attack against Next-Item Recommendation. In WWW. 2458-2464.
[66] Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne Xin Zhao,
and Jing Gao. 2021. Data Poisoning Attack against Recommender System Using
Incomplete and Perturbed Data. In KDD. 2154-2164.
Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based
Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 52,
1(2019), 5:1-5:38.

[65

[67

[68]

[69

[70

Chengzhi Huang and Hui Li

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. 2020.
Adversarial Attacks on Deep-learning Models in Natural Language Processing:
A Survey. ACM Trans. Intell. Syst. Technol. 11, 3 (2020).

Xuxin Zhang, Jian Chen, Rui Zhang, Chen Wang, and Ling Liu. 2021. Attacking
Recommender Systems With Plausible Profile. IEEE Trans. Inf. Forensics Secur. 16
(2021), 4788-4800.

Xin Zhang, Zengmao Wang, and Bo Du. 2022. Deep Dynamic Interest Learning
With Session Local and Global Consistency for Click-Through Rate Predictions.
IEEE Trans. Ind. Informatics 18, 5 (2022), 3306-3315.

Yongfeng Zhang, Yunzhi Tan, Min Zhang, Yiqun Liu, Tat-Seng Chua, and Shaop-
ing Ma. 2015. Catch the Black Sheep: Unified Framework for Shilling Attack
Detection Based on Fraudulent Action Propagation. In IJCAL 2408-2414.

Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-enhanced
MLP is All You Need for Sequential Recommendation. arXiv Preprint (2022).
https://arxiv.org/abs/2202.13556

https://arxiv.org/abs/2202.13556

	Abstract
	1 Introduction
	2 Background
	3 Our Method SUI-Attack
	3.1 Overview
	3.2 Feature Generation
	3.3 Edge Generation
	3.4 Optimization

	4 Experiment
	4.1 Experimental Settings
	4.2 Performance of Shilling Attack
	4.3 Attack Invisibility
	4.4 Ablation Study

	5 Related Work
	5.1 Recommender Systems (RS)
	5.2 Shilling Attack against RS
	5.3 Adversarial Attacks in the Extremely Limited Scenarios

	6 Conclusion
	Acknowledgments
	References

