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ABSTRACT

Given a collection of objects, the reverse k-ranks query takes as
input a query object q in the set and returns the top-k objects that
rank q higher compared to where other objects rank q. This query
has been studied in the vector space, however, there is no previous
work in the context of graphs. In this paper, we propose a filter-
and-refinement framework, which prunes the search space while
traversing the graph in search for the reverse k-ranks query results.
We present an optimized algorithm and an index that apply on this
framework and boost its performance. The proposed techniques
are evaluated on real data; the experimental results show that our
solutions scale well, rendering the query applicable for searching
large graphs.

1. INTRODUCTION
Ranking queries (e.g., k-NN query [10], reverse k-NN query

[13], reverse top-k query [21], reverse k-ranks query [27]) have be-
come very popular in database management systems. Among them,
the reverse k-ranks query has been recently proposed as an en-
hancement of the reverse top-k query, which ensures the same num-
ber of results for any query input. Specifically, given a customer-

product vector space, where customers rank products, the reverse
top-k query takes as input a product and an integer k, and pro-
duces as output the k customers that rank the product higher com-
pared to its ranking by other customers. However, there is no prior
work on how to evaluate reverse k-ranks queries on graphs, where
graph proximity measures can be used to define the distance be-
tween nodes (and their ranking with respect to a query node).

Motivation. The reverse top-k query was extended to apply on
large graphs in [26, 25]. Given a query node and an integer k, this
query retrieves all other nodes that have the query node in the set of
their k nearest nodes, based on a proximity measure. We conducted
an experiment, where we apply reverse top-k queries (using short-
est weighted path as the proximity measure) on the DBLP author
collaboration graph [12]. Each node in the graph corresponds to an
author and two authors are connected by an edge if they have pub-
lished at least one paper together. Edges are weighted to reflect the
strength of the collaboration [17, 11]. The application of a reverse
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top-k query is to let the query author know what other authors are
keen to collaborate with him/her. According to our experiments in
Section 6.2, for a large percentage of query nodes, the reverse top-
k query returns either very few or too many results. The fact that
reverse top-k queries do not have a fixed number of results limits
their utility, especially in applications such as graph based recom-
mender systems (e.g., tag recommendation [7], friendship recom-
mendation [14], product recommendation [19] and paper recom-
mendation [16]), where making recommendations to “cold-start”
users who are weakly connected to the rest of the data is an impor-
tant issue. On the other hand, the reverse k-ranks query returns a
result of fixed size (k) for any query node; hence, it is particularly
useful for new nodes of the graph (e.g., new social network users)
who have little influence to other nodes and for “hot” nodes, which
have very high influence but still want to shortlist the nodes that
they are most attracted to them.

Frank

George Sid Caroline

Bob AliceEric

1
.1

1

2.2

Figure 1: A Toy Example

EXAMPLE 1. Figure 1 illustrates a toy example. Seven researchers

form a weighted undirected graph. Alice is a new researcher and

she only has a weak connection with Bob. If we use shortest path

to measure proximity, we can get the rank matrix shown in Table

1. For example, Rank(Alice, Eric) is Eric’s position in the list of

nodes ordered by shortest path distance from Alice. Indeed, Eric

is the 2nd closest node (after Bob) to Alice with a shortest path

distance 1.2.

A reverse top-k query having Alice as the query node with k = 2
returns no results since Alice does not fall into any researchers’

top-2 list (See first column of Table 1). This means that this query

is not useful to Alice for recommending her researchers to collab-

orate with. On the other hand, a reverse 2-ranks query for Alice

returns a nonempty result {Bob, Caroline}, since both Bob and Car-

oline rank Alice higher compared to her rank by other researchers,

which means that these are the two researchers who are most likely

to collaborate with her. If the query node is Eric and we use a re-
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verse top-2 query, we will recommend all other six researchers to

him because of his close relationship to all of them; this result is

overwhelming and would not be useful to Eric. On the other hand,

a reverse 2-ranks query returns {Bob, Sid} (since Bob and Sid rank

Eric as 1st while others rank him as 2nd).

Table 1: Rank Matrix
Alice Bob Caroline Sid Eric Frank George

Alice - 1 3 5 2 4 6

Bob 3 - 2 5 1 4 6

Caroline 4 1 - 3 2 5 6

Sid 6 2 2 - 1 4 5

Eric 6 1 2 4 - 3 5

Frank 6 3 4 5 2 - 1

George 6 3 4 5 2 1 -

Applications. In the era of big data, large volumes of graph data
are becoming available. Reverse k-ranks queries over large-scale
graphs can find application in spatial network data analysis, col-
laboration recommendation, dating, etc. For example, the manage-
ment of a supermarket chain may want to investigate the space of
potential customers. Given a road network which includes com-
munities (i.e., estates) and supermarkets, a reverse k-ranks query
will return a list of k communities which rank a given supermar-
ket higher compared to where it is ranked by other communities,
based on its network distance. The result can be used by the man-
agement to conduct targeted advertisement and promotion. As dis-
cussed, reverse k-ranks queries can also be used for collaboration
and friendship recommendation in collaboration networks or social
networks.

Contribution. In this paper, we study the evaluation of reverse k-
ranks queries on large graphs, using shortest weighted path as the
measure of proximity between nodes. To the best of our knowl-
edge, there is no previous work on this problem. The special na-
ture of graph data does not allow the application of the approaches
proposed for reverse k-ranks queries in the vector space [27]. In
addition, extending existing solutions for top-k search and reverse
top-k search on graphs to compute reverse k-ranks queries is not
trivial. Specifically, for a top-k search we only have to find the top-
k proximity set of a single node q and for the reverse top-k search
we need to compute the top-k sets of all nodes in the graph and
check whether q appears in each of them. For the reverse k-ranks
query, we must calculate all rank sets of all nodes in the graph and
find the top-k ranks of q in them; therefore, a reverse k-ranks query
is substantially more expensive than top-k search and reverse top-k
search.

Our contributions can be summarized as follows:

• We study for the first time reverse k-ranks queries on large
graphs and propose a filter-and-refine graph browsing frame-
work to evaluate it. We propose effective bounds for the
ranks of the examined nodes that limit the set of nodes which
need to be accessed during query evaluation.

• We propose a dynamically refined, space-efficient index struc-
ture, which supports reverse k-ranks query evaluation. The
index is paired with an efficient online query algorithm, which
prunes a large number of nodes that are definitely in or not
in the reverse k-ranks result and reduces the required refine-
ments for the remaining candidates.

• We conduct an experimental study demonstrating the effi-
ciency of our framework, as well as the effectiveness of the
reverse k-ranks query in real graph applications.

The remainder of this paper is organized as follows. Section 2
provides a formal definition of reverse k-ranks search and discusses
a baseline brute-force solution. In Section 3, we present a funda-
mental theorem and our basic two-step framework. Two efficient
algorithms, Dynamic Bounded SDS-tree and Dynamic Bounded
SDS-tree with index, are proposed in Section 4 and Section 5 re-
spectively. Section 6 evaluates the effectiveness of reverse k-ranks
queries and the efficiency of the proposed framework. In Section 7,
we briefly discuss previous work related to reverse k-ranks queries.
Finally, Section 8 concludes the paper.

2. PROBLEM DEFINITION
A formal definition of the reverse k-ranks query is given below:

DEFINITION 1. (Rank(s,t)) Consider a weighted graph G =
(V,E), consisting of a set of nodes V and a set of edges E. Each

edge in E carries a non-negative weight. For any two nodes s, t ∈
V , let d(s, t) denote the shortest path distance from s to t, which

is defined by summing up the weights of the edges along the short-

est path from s to t. Let S be the set of nodes that satisfy ∀pi ∈
S, d(s, pi) < d(s, t) and ∀pj ∈ (V −S−{t}), d(s, pj) ≥ d(s, t).
Then, Rank(s, t) = |S|+1 where S ⊂ V and |S| is the cardinal-

ity of S.

DEFINITION 2. (Reverse k-Ranks Query on a Graph) Given a

weighted graph G = (V,E), a query node q and a positive integer

k, the reverse k-ranks query returns a subset T of V , such that

|T | = k and ∀pi ∈ T , ∀pj ∈ (V − T − {q}), Rank(pi, q) ≤
Rank(pj , q).

Computing the reverse k-ranks set of a query node q is not trivial.
A naive method, for each node pi ∈ V , traverses the graph to
find the distances to all other nodes from pi in increasing order
(i.e., using Dijkstra’s algorithm) until q is encountered; this can
give us Rank(pi,q). During this process, the top-k of these ranks are
maintained in a heap and eventually returned as results. Obviously,
this method is very expensive. Another possible solution is to apply
multiple reverse top-k′ queries with an increasing k′ value, until the
number of results is similar to the k value of the reverse k-ranks
query. This solution, apart from only giving an approximate result,
is also expensive because the number of required reverse top-k′

queries could be large and there is no straightforward method for
evaluating them incrementally.

3. GENERAL TWO-STEP FRAMEWORK
To process reverse k-ranks queries efficiently, we design a two-

step framework. First, we build a Shortest Distance Search tree
based on the given query node and use it to prune the space of can-
didate nodes. Second, in a refinement step, we compute Rank(pi,q)
for each surviving candidate node pi; during this process, the top-k
nodes are maintained in a priority queue and they are finally output.
Although our examples and illustrations are on undirected graphs,
our solutions can directly be applied to directed graphs.

3.1 Filter step: SDS-Tree
Given a graph G = (V,E), the Shortest Distance Search tree

(SDS-tree) rooted at vertex q is a spanning tree Tq of graph G, such
that the path distance from any other vertex p to q is the shortest
path distance from p to q in G. SDS-Tree is similar to the Dijkstra
tree [4], but on the transpose graph GT , which can be different to G
if G is directed. GT is a directed graph on the same set of vertices
as G, but with all of the edges of G reversed. That is, if G contains
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Algorithm 1 Basic SDS-tree Construction

1: procedure REVERSEKRANK(q,G)
2: Priority Queue Q← {q : 0} ⊲ nodes to visit
3: R← ∅ ⊲ reverse k-ranks result
4: D ← ∅ ⊲ nodes visited
5: kRank ← Inf ⊲ k-th top rank in R
6: while Q do

7: top← Q.pop()
8: D ← D

⋃

{top}
9: top.rank ← GetRank(top, kRank)

10: if top.rank 6= −1 then ⊲ Theorem 1
11: Update R
12: kRank ← new k-th rank in R
13: for t in top.neighbors() do

14: if t /∈ D then

15: dis← top.dis+ d[top][t]
16: if t ∈ Q and t.dis > dis then

17: t.dis← dis
18: else

19: t.dis← dis
20: Q.push(t)

21: return R

an edge (u, v) then GT contains an edge (v, u) with same weight
and vice versa. If G is undirected, then GT = G.

To build the SDS-tree for the query input node q, we run Dijk-
stra’s algorithm on the reversed edges of the graph (Algorithm 1).
Specifically, we maintain a priority queue of the current shortest
distance from each node to query node q. Each time, we dequeue
the node t with the shortest distance d(t, q), add t to the tree by
making it a child of its successor node in the shortest path from t
to q, and update the distance from t’s neighbors to query node q.
At the same time we conduct a rank refinement for t; that is we
compute Rank(t, q). This rank refinement procedure (GetRank in
Line 9 of Algorithm 1) will be explained shortly. During the tree
construction process, every time we dequeue a node t and after
updating Rank(t, q), we maintain the set R of the nodes with the
lowest Rank(t, q) values (to be output at the end of the algorithm).
The largest of the k lowest Rank(t, q) values so far is denoted by
kRank and serves as a bound. The tree construction finishes when
the shortest paths from all nodes to q have been determined.

For a large graph, constructing the entire SDS-tree is too expen-
sive. We now show some nice properties of the SDS-tree that can
help us to compute the reverse k-Ranks results, without having to
build the whole tree.

LEMMA 1. Consider a weighted graph G = (V,E) and two

nodes p, q ∈ V . For any node p′ whose shortest path to q passes

through p, Rank(p′,q) ≥ Rank(p,q).

PROOF. According to Definition 1, there must exist two sets
S and T , such that Rank(p,q)=|S| + 1 and Rank(p′,q)=|T | + 1.
The aim here is to prove that S ⊂ T , which means that |S| ≤
|T |. By definition, we know that ∀pi ∈ S, d(p, pi) < d(p, q).
Since all weights are non-negative, we further have d(p′, p) ≥ 0.
Also, a path from p′ to any pi passes through p, which means that
d(p′, pi) ≤ d(p′, p) + d(p, pi). As a result, we have d(p′, pi) ≤
d(p′, p) + d(p, pi) ≤ d(p′, p) + d(p, q) = d(p′, q), therefore
∀pi ∈ S, pi ∈ T ; i.e., S ⊂ T .

Based on Lemma 1, we can easily obtain the following funda-
mental theorem:

THEOREM 1. Given a SDS-tree Tq rooted at q and a node p of

Tq , for any descendant p′ of p, Rank(p′,q) ≥ Rank(p,q).

Based on Theorem 1, we can conclude that, given a SDS-tree Tq

rooted at q, if node p is not in the reverse k-ranks query result of
node q, then no child of p can be part of the result. This means that
p’s children need not be added to Tq during the tree construction;
this can greatly limit the number of nodes p′ that are added to the
tree and for which Rank(p′, q) needs to be computed.

3.2 Rank Refinement
During the SDS-tree construction, for each node p that we visit

and it is a candidate reverse k-ranks result, we have to apply a rank

refinement procedure which computes Rank(p, q). This is done by
counting all nodes whose distance from p is shorter than d(p, q).
For this purpose, we build a partial Dijkstra tree starting from node
p and we stop when we find q. The number of nodes that we en-
counter by this search is Rank(p, q).

Recall that in Algorithm 1 we keep track of the set R of the
lowest Rank values so far and of the current k-th top Rank value,
denoted by kRank. During the refinement of Rank(p, q), p can
be pruned as soon as the number of nodes in the partial Dijkstra
tree before reaching q is larger than kRank − 1, since in this case
p has no potential to become a reverse k-ranks result, as well as
its children nodes in the SDS-tree. The rank refinement step for a
node is described by Algorithm 2.

Algorithm 2 Rank Refinement Algorithm

1: procedure GETRANK(node, kRank)
2: Priority Queue Q← {node:0} ⊲ Nodes to visit
3: D ← ∅ ⊲ Nodes visited
4: rank← 1
5: while Q do

6: top← Q.pop()
7: D ← D

⋃

{top}
8: for t in top.neighbors() do

9: if t not in D then

10: dis← top.dis+ d[top][t]
11: if t ∈ Q and t.dis > dis then

12: t.dis← dis
13: else if t /∈ Q and node.dis > dis then

14: t.dis← dis
15: Q.push(t)
16: rank ← rank + 1
17: if rank > kRank then

18: return −1 ⊲ Definition 2

19: return rank

For the example of Figure 1, the SDS-tree is the same as the
Dijkstra tree since G is an undirected graph (see Figure 2). Assume
that k=2. The priority queue initially has ‘Alice’ as top element;
after that, Algorithm 1 will perform rank refinement for Bob and
get Rank(Bob,Alice) = 3. Since Bob can be in the reverse 2-
ranks results of Alice, the neighbors of Bob (i.e. Caroline and Eric)
are added to the priority queue Q. Because Eric’s distance to Alice
is shorter than that of Caroline, we will first do rank refinement of
Eric, and get Rank(Eric,Alice) = 6. Then, the neighbors of Eric
(i.e. Sid, George and Frank) will all be added to the priority queue.
Then, since Caroline has the shortest distance to Alice, we will do
rank refinement for it and get Rank(Caroline,Alice) = 4. After
that, Frank, Sid and George will be rank-refined one by one.
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Figure 2: The SDS-tree for Example 1

4. DYNAMIC BOUNDED SDS-TREE
The filter-and-refinement framework described in the previous

section significantly reduces the search space and it is much faster
than the brute-force approach of computing the entire rank matrix.
On the other hand, there may still be many false hits, i.e., nodes
which are ranked-refined without ending up in the reverse k-ranks
result. In Algorithm 1, each node is decided to be a candidate or
not, immediately after refining its parent at the SDS-tree. However,
at the time when a node p is dequeued, the current reverse k-ranks
result (and the bound kRank) may have changed and it might be
then possible to prune p just before its rank-refinement. We pro-
pose a Dynamic Bounded SDS-tree (DSDS-tree) approach, which
is based on the idea of delaying the decision whether a node is a
candidate to just before its rank refinement and on using a set of
bounds to potentially prune the node.

In the DSDS-tree approach we maintain for each node p in the
priority queue Q a lower bound of Rank(p, q). p will be consid-
ered as a candidate right when it is dequeued; then, it is rank-refined
only when its Rank lower bound is lower than the current k-th top
Rank value (i.e. kRank). Only then p has a chance to enter the
reverse k-Ranks query result. Specifically, we set the lower bound
of Rank(p, q) for each node p in DSDS-tree Tq rooted at node q as
the maximum of the following three quantities: the depth of node p
in tree Tq , the Rank value of its parent nodes, and the times visited
so far during the rank-refinement of other nodes. Formally,

THEOREM 2. Consider a DSDS-tree Tq rooted at query node q.

For any node p whose depth is h and parent node is p′, Rank(p,q)≥
max(h, Rank(p′,q), p.lcount), where p.lcount is the number of

visited times for node p during the rank refinements of other nodes

before actual refinement of node p itself.

We can prove Theorem 2 by showing that each of the three quan-
tities constitutes a lower bound by itself, therefore their maximum
is a lower bound (the tightmost one, hence the most useful). In fact,
we have already shown that Rank(p′, q) is a lower bound (Lemma
1). Now, we will prove the other two bounds.

We first demonstrate that Rank(p, q) should not be less than the
depth of node p in DSDS-tree Tq .

LEMMA 2. Consider the DSDS-tree Tq of a query node q and

suppose the depth for root is 0. For any node p whose depth is h,

Rank(p,q)≥ h.

PROOF. If p is at depth h, then the shortest path from p to q
passes through n = h−1 nodes, i.e., the path is {p, p1, p2, ...pn, q}.
Since ∀i ∈ [1, n], d(p, pi) < d(p, q), we have Rank(p, q) > n,
i.e., Rank(p, q) ≥ h.

We next show that Rank(p, q) should not be less than the times
that node p was visited during the rank-refinements of other nodes,
before being refined itself.

LEMMA 3. Consider a weighted graph G = (V,E) and two

nodes p1, p2 ∈ V , such that d(p1, q) ≤ d(p2, q). If d(p1, p2) <
d(p1, q) holds, d(p2, p1) < d(p2, q) also holds.1

PROOF. d(p2, p1) = d(p1, p2) < d(p1, q) ≤ d(p2, q), so d(p2, p1)
< d(p2, q) holds.

LEMMA 4. Given a DSDS-tree Tq for a query node q, for any

node p which has been visited during the rank refinements of other

nodes for p.lcount times before refinement of node p itself, Rank(p,q)≥
p.lcount.

PROOF. For any node p, let T be the set of nodes which have
been visited during the refinement of any node p′ ∈ T before node
p itself, where |T | = p.lcount. This means that d(p′, q) ≤ d(p, q)
and d(p′, p) < d(p′, q). Based on Lemma 3, we can conclude that
d(p, p′) < d(p, q), which means that Rank(p,q)≥ p.lcount.

In order to use Theorem 2, while building the dynamic SDS-Tree
rooted at node q, we also need to maintain a priority queue of the
current shortest distances from each node to query node q. Each
time, we dequeue the node t with the shortest distance d(t, q), we
add t to the tree by making it a child of its successor node in the
shortest path from t to q, and update the distance from t’s neigh-
bors to query node q if t successfully entered the current reverse
k-ranks result set (as in Section 3). However, unlike the static SDS-
tree, where for all nodes maintained in the priority queue we per-
form their rank refinement when we visit them, the dequeued nodes
in the dynamic SDS-Tree are only rank-refined if their rank lower
bound is smaller than the current kRank.

Consider the example in Figure 1. Similar to the basic frame-
work of Section 3, the priority queue will initially have ‘Alice’ as
root first. After dequeuing Alice and adding her neighbors in the
queue, we will dequeue and rank-refine Bob to get
Rank(Bob,Alice) = 3. Then, the neighbors of Bob (i.e. Car-
oline and Eric) will enter the priority queue. The rank refinement
of Eric follows, giving Rank(Eric,Alice) = 6. Then, neigh-
bors of Eric (i.e. Sid, George and Frank) will all enter the priority
queue. Next, we will do the rank refinement of Caroline and get
Rank(Caroline,Alice) = 4. The process can terminate here,
since the lower bounds of ranks for Frank, Sid and Gorge are al-
ready larger than kRank. As a comparison, note that we would
still have to do rank refinement for Frank, Sid and Gorge in the
basic framework.

The lower-bound of Rank for each node can be dynamically up-
dated during rank refinement steps. When meeting node t in the
rank refinement of node p, we can update t.lcount by adding 1,
which can be done in constant time using a hash table. The whole
space complexity will be O(|V |), but in practice we need much
less space as the framework does not visit the nodes which are far
from q.

5. INDEX-BASED SEARCH
In this section we propose an indexing approach which, when

paired with the method presented in Section 4, can help to further
reduce the cost of reverse k-ranks queries. A naive solution in this
direction would be to precompute the entire rank matrix of size
|V | ∗ |V |. Starting from each node u, we can run a single-source
shortest-path (SSSP) algorithm, i.e., build the entire Dijkstra tree,
which can order all other nodes v by increasing Rank(u, v) value.
After computing the rank matrix, for each node v, we can sort the
corresponding column of the matrix and obtain a ranked list of all

1This lemma holds for undirected graphs only. Therefore the
count-based bound is not used in the case of directed graphs.
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Algorithm 3 Build Dynamic SDS-Tree with Index Algorithm

1: procedure REVERSEKRANK(q,G)
2: Priority Queue Q← {q : 0} ⊲ Nodes to visit
3: R← top-k in reverse_rank_dict ⊲ result so far
4: D ← ∅ ⊲ Nodes visited
5: kRank ← k-th top Rank in R
6: while Q do

7: top← Q.pop()
8: D ← D

⋃

{top}
9: if top ∈ R then

10: for t in top.neighbours() do

11: if t /∈ D then

12: dis← top.dis+ d[top][t]
13: if t ∈ Q and t.dis > dis then

14: t.dis← dis
15: else

16: t.dis← dis
17: Q.push(t)

18: LBound ← max(top.height, top.parent.rank,
top.lcount, check_dic[top])

19: if LBound ≥ kRank then

20: continue

21: top.rank ← GetRank(top, kRank)
22: if top.rank 6= −1 then ⊲ Theorem 1
23: Update R
24: kRank ← new k-th rank in R
25: for t in top.neighbours() do

26: if t /∈ D then

27: dis← top.dis+ d[top][t]
28: if t ∈ Q and t.dis > dis then

29: t.dis← dis
30: else

31: t.dis← dis
32: Q.push(t)

33: return R

other nodes u with respect to Rank(u, v). For any reverse k-ranks
query q, we can then return as results the first k nodes in the ranked
list of q. The problem of this naive solution is that it is too ex-
pensive to precompute the entire rank matrix for very large graphs.
Instead, we propose to only select a subset of H nodes, called hubs,
and only run M iterations of SSSP from each hub node s to obtain
s’s top-M list of nearest nodes. For each node ti, i = {1, 2, ...,M}
in this list, we simply know that Rank(s, ti) is the order of ti in the
list. The index also includes two additional components: a Check

Dictionary and a Reverse Rank Dictionary, to be explained in Sec-
tion 5.2. The index can facilitate the evaluation of reverse k-ranks,
for k values not exceeding a parameter K. Index parameters H ,
M , and K are defined based on a precomputation cost/ speedup
tradeoff. The larger these values are the more time it takes to create
and maintain the index; on the other hand, reverse k-ranks queries
are evaluated faster. In Section 6 we study the overhead and effec-
tiveness of the index for various values of these parameters.

In the following, we first describe strategies for selecting the hub
nodes and then show how we can use the precomputed information
to initialize the index that can help to accelerate the computation of
reverse k-ranks queries.

5.1 Hub Selection
We propose the following three strategies for selecting the hubs:

random, degree first, closeness first. These strategies are experi-

Algorithm 4 Dynamic Rank Refinement with Index Algorithm

1: procedure GETRANK(node, kRank)
2: Priority Queue Q← {node:0} ⊲ Nodes to visit
3: D ← ∅ ⊲ Nodes visited
4: rank← 1
5: while Q do

6: top← Q.pop()
7: D ← D

⋃

{top}
8: Update reverse_rank_dict
9: for t in top.neighbours() do

10: if t not in D then

11: dis← top.dis+ d[top][t]
12: if t ∈ Q and t.dis > dis then

13: t.dis← dis
14: else if t /∈ Q and node.dis > dis then

15: t.dis← dis
16: Q.push(t)
17: rank ← rank + 1
18: t.lcount← t.lcount+ 1
19: if rank > kRank then

20: check_dic[node]←D.size()
21: return −1 ⊲ Definition 2

22: check_dic[node]← rank
23: return rank

mentally evaluated in Section 6.
Random: We select the hubs randomly; this is used as a baseline

to show the significance of other strategies.
Degree First: We select the vertices with the highest out-degrees

as hubs. The reasoning behind this strategy is that vertices with
higher out-degree have higher chances to connect with short short-
est paths to many other vertices and therefore they have higher
probability to be reverse k-Ranks query results.

Closeness First: We select as hubs the vertices with the highest
closeness centrality. If we define farness of a node v as the sum of
its distances from all other nodes, then closeness centrality is de-
fined as the reciprocal of farness, which is C(v) = 1/

∑

u
d(u, v)

[2, 18]. Since computing exact closeness centrality for all vertices
requires O(|V | · |E|) time [3] even for sparse graphs, we approxi-
mate closeness centrality by randomly sampling a small number of
vertices and computing distances from those vertices to all vertices
as in [1].

H = 4

M = 3

K = 2

Bob:3
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Bob: 2 Eric: 2

Bob: 1 Sid: 1
Eric: 3

Frank: 1
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Figure 3: Index

5.2 Index Creation
After selecting H hubs following one of the heuristic strategies

mentioned above, we build the index by running the SSSP algo-

41



rithm from each hub node u and stopping after obtaining the M
nearest nodes from u. For each hub we store the list of M near-
est nodes with their ranks. The index has two components: 1) the
Check Dictionary; a hash-map, having nodes as keys and the num-
ber of steps SSSP has taken starting from these nodes as values
(i.e., it contains an entry {u : M}, for each hub node u at the be-
ginning); and 2) the Reverse Rank Dictionary; a set of adjacency
lists, each corresponding to a node v and containing the current re-
verse K-ranks result of v ordered by rank value from small to large
(recall that K is the maximum possible value of k).

Following the running example, suppose we choose {Sid, Frank,
Bob, Eric} as the hubs, and precompute their top-3 rank list (i.e.,
H = 4 and M = 3). This gives us the rank matrix shown at
the top of Figure 3. Assume that the largest possible value for k
is K = 2. Then, we can set up the index with the following two
parts. The Check Dictionary is {Sid:3, Frank:3, Bob:3, Eric:3}
since from these four hub nodes we have so far retrieved the 3
nearest neighbors. The Reverse Rank Dictionary stores the exist-
ing reverse K-ranks result list for each hub node. Consider, for
example, hub node Bob; we already know three Rank values, i.e.
Rank(Eric,Bob) = 1, Rank(Sid,Bob) = 2 and Rank(Frank,
Bob) = 3, but we only need to store the top-2 ranks in the Reverse
Rank Dictionary, i.e., Rank(Eric,Bob) = 1 and Rank(Sid,Bob)
= 2.

5.3 Querying and Index Updates
The proposed index is dynamic and can be updated whenever a

new reverse k-ranks query is evaluated. For a new query node q,
we first look up the Reverse Rank Dictionary to get any existing
reverse k-ranks query results for q, which can give us an estimation
for the k-th top Rank value (i.e. kRank). However, what we get
from the index may not be the final query result; we may have to
conduct more graph exploration. For this, we follow the general
two-step framework described in the previous sections: we build
the dynamic bounded SDS-tree, and do rank-refinement for can-
didate nodes. The index allows us to have a better estimation of
the rank value Rank(u, q) for each candidate node u: if u is in
the Reverse Rank Dictionary of q, there is no need to do rank re-
finement for node u; if u is not in the Reverse Rank Dictionary of
q, but the value of node u in the Check Dictionary is no smaller
than the current kRank value, there is also no need to do rank re-
finement for node u (i.e., u can be pruned). Otherwise, we have
to do rank refinement for node u. For this purpose, we conduct
SSSP search from u. During SSSP search, until the rank value of
the nodes that we visit exceeds Check Dictionary[u], we have to
update Reverse Rank Dictionary. Specifically, if we reach node
v with Rank(u, v) = t1, and t1 is smaller than the highest rank
value of Reverse Rank Dictionary[v], then we have to update Re-

verse Rank Dictionary[v] with {u : t1}. After finishing the rank
refinement step from node u with Rank(u, v) = t2, we also need
to update the Check Dictionary with {u : t2}. Algorithms 3 and 4
show how the search algorithm and its rank refinement module are
adapted to use the index.

Following the previous example, we select {Sid, Frank, Bob,
Eric} as the hubs, and precompute their top-3 ranks list as initial
index. Consider Alice as the query. The index will be updated as
shown in Figure 4. The index initially is as shown in Figure 3. The
first step is to do rank refinement for Bob. However, as we can see
in the index, the Reverse Rank Dictionary of Alice has {Bob:3},
which means that we need not update or compute anything and we
can just turn to Eric directly. During the rank-refinement step of
Eric, we also get the rank of other nodes for node Eric, and we can
update the Check Dictionary and Reverse Rank Dictionary corre-

spondingly: We add {Eric: 4} for Sid, {Eric: 5} for George, and
finally {Eric: 6} for Alice, which is also the query node. After
we reach Alice starting from Eric with Rank equals to 6, we also
update the Check Dictionary with {Eric: 6}. Continuing this way,
we proceed to rank-refine the next node (Caroline), and terminate,
after updating again the Check Dictionary and the Reverse Rank

Dictionary. Even though index updates incur extra costs (com-
pared to the algorithm presented in Section 4), the updated index
can help to speed up processing of future reverse k-ranks queries,
as we demonstrate in the next section.

The space complexity for Check Dictionary and Reverse Rank

Dictionary is O|V |) and O(K · |V |), respectively. The overall
space complexity for both index componets isO(K ·|V |). The time
complexity of building the index is reduced from O(|V | · (|V | +
|E| · log |V |)) of the whole matrix building to O(H · (M + |E∗| ·
logM)) now, where |E∗| is the number of edges linked with M
nodes, estimated as |E∗| = M · |E|/|V | and bounded by O(|E|).

6. EXPERIMENTAL EVALUATION
In this section, we conduct an experimental evaluation for the

effectiveness of reverse k-ranks queries on large graphs and verify
the efficiency of our proposed algorithms. All tested methods were
implemented in C++ and the experiments were conducted on a In-
tel(R) Xeon(R) CPU E7-4870 @ 2.40GHz machine, with 1 TB of
main memory.

6.1 Datasets
Datasets DBLP, Epinions and SF are used in our experiments.

General statistics of the three datasets are shown in Table 2.

Table 2: Data Sets
DBLP Epinions SF

# of Nodes 1,314,050 75,879 321,678

# of Edges 18,986,618 508,837 800,172

Average Degree 14.45 6.71 2.49

Dataset DBLP2 contains the collaboration graph of DBLP in
May 2015. There are 1,314,050 nodes and 18,986,618 edges in this
dataset. Each node in the graph denotes an author and authors who
have collaborated are linked by edges. The edge weight between
two nodes u and v is set to 1 divided by the number of co-authored
papers by u and v increased by log2 deg(u) + log2 deg(v) with
normalization, where deg(u) is the degree of node u [17, 11]. Set-
ting the edge weights like this can produce less ties in the result set,
which is important for unambiguous ranking quality evaluation.

Dataset Epinions3 includes an online social network from the
trust based reputation system Epinions.com. There are 75,879 nodes
and 508,837 edges in this directed graph. Each node is a user of the
system. One user can indicate whether he/she ‘trust’ another user’s
review (i.e., whether it is useful to him/her) and one trust statement
forms an edge from the declarer to the target. Edge weights are
sampled from a Zipf distribution with a skewness parameter α = 2,
as in [23].

Dataset SF contains locations of stores and road network infor-
mation in San Francisco bay area. There are 408 stores in this
dataset, which are crawled from GeoDeg4. The road network was
made public during the 9th DIMACS Implementation Challenge5.

2http://konect.uni-koblenz.de/networks/dblp_coauthor
3http://snap.stanford.edu/data/soc-Epinions1.html
4http://geodeg.com
5http://www.dis.uniroma1.it/challenge9/download.shtml
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Figure 4: Index Update

There are 321,270 nodes and 800,172 edges in the network. Each
store is mapped to the nearest network node. The weight on an
edge (u, v) models the travel time between nodes u and v.

6.2 Effectiveness Analysis
To demonstrate the effectiveness of graph based reverse k-ranks

queries, we conduct analysis at different levels of granularity that
illustrate the problems of reverse top-k and top-k queries and the
superiority of reverse k-ranks queries.

6.2.1 Coarse-grained Analysis

In our coarse-grained analysis, we investigate the results of top-k
and reverse top-k queries on the DBLP dataset.

Reverse top-k query. Table 3 shows some statistics about the
result sizes of reverse top-k queries on the DBLP dataset. k varies
from 5 to 100. From the results, we can see that the size of re-
sult sets is not balanced. Reverse top-k queries return results of
different cardinality for different query nodes. No matter what the
value of k is, there always exists a large percentage of query nodes
with empty reverse top-k result sets. When we increase the value
of k from 5 to 100, the number of query nodes whose result set is
empty decreases, but it remains in the same order of magnitude. At
the same time, the largest result set size increases to 6,385, which
is impractical to users.

Table 3: Reverse Top-k Result Set Size
k 5 10 20 50 100

largest set size 327 560 1,031 2,596 6,385

# of empty set 315,424 240,378 190,105 155,927 148,238

# of small set (≤ 5) 1,004,448 757,906 529,390 301,321 213,192

# of large set (≥ 100) 332 3,765 32,686 158,412 311,874

Top-k query. The problem of the top-k queries is that they are
unilateral, i.e., the nodes that the query node ranks highest may
not rank the query node high as well. To illustrate this problem,
we investigate whether query nodes and the returned nodes have
each other in their top-k results. We use ✶(i, j) to indicate whether

nodes i and j agree with each other:

✶(i, j) =

{

1, if i ∈ topk[j] and j ∈ topk[i]
0, otherwise

where topk[j] is the set of k-nearest nodes to j. Then the agree-

ment rate can be calculated as:

agreement rate =

∑

i

∑

j∈topk[i]
✶(i, j)

∑

i
|topk[i]|

Table 4 shows the agreement rate for various values of k. From
the result, we can see that only less than half of the nodes in a top-
k result also include the query node in their own top-k lists, i.e., a
low agreement rate. Therefore top-k queries cannot be used as a
substitute of reverse top-k and reverse k-ranks queries.

Table 4: Agreement Rate of Top-k Queries on DBLP
k Value 5 10 20 50 100

Agreement Rate(%) 48.53 44.65 41.10 37.88 35.65

6.2.2 Fine-grained Case Study

Wellcome and Parknshop are the two most popular supermar-
ket chains in Hong Kong, having branches almost everywhere. We
randomly choose a Wellcome and a Parknshop supermarket nearby
on Google Maps, locate their nearby representative communities,
and measure the road network distance between them as shown in
Figure 5. In this case study, as we can see, the nearest represen-
tative community to Parknshop is B, however, if someone lives in
B, he/she will prefer Wellcome to Parknshop since Wellcome is
nearer. Instead, A and D would prefer Parknshop over Wellcome.
Thus, the result of a top-1 query for Wellcome and Parknshop (B
in both cases) is less meaningful for recommendation or advertise-
ment compared to the result of the reverse-1 ranks query (B and A,
respectively).

The reverse top-1 query here returns {A,D} for Parknshop and
{B,C,E, F,G} for Wellcome, which is reasonable compared to
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Figure 5: Case Study of Wellcome and Parknshop

Table 5: Parameters (default values in bold)
Parameter Values

k 5,10,20,50,100

h = H/|V | 0.03,0.05,0.07,0.1,0.15

m = M/|V | 0.03,0.05,0.07,0.1,0.15

hub strategy Random, Degree First, Closeness First

top-1 query, though with unfixed size. However, the relatively large
size of results also means higher cost for promotion for the com-
panies. On the other hand, the reverse k-ranks query defines an
ordering of the communities with respect to their preferences on
the supermarkets which can be used to prioritize market promotion
to the communities that have higher chances to use it, in case of a
limited budget.

6.3 Efficiency Analysis
In this section, we evaluate the performance of the reverse k-

ranks approaches proposed in this paper, namely the static SDS-
tree (Section 3), the dynamic SDS-tree (Section 4), and the dy-
namic SDS-tree with index (Section 5). We first measure the cost
of the approaches as a function of different parameter values of the
problem and the index. Then, we evaluate the effectiveness of the
bounds used by the dynamic SDS-tree method. Next, we assess the
cost of updating the index, and finally we study the efficiency of
our methods on bichromatic instances of the problem.

6.3.1 Varying the Parameter Values

We evaluate the performance of our methods as a function of
the following parameters: (1) size of the result set k, (2) percent-
age of hub nodes h = H/|V |, (3) percentage of ranked nodes in
each index entry m = M/|V |, (4) hub selection strategy. Table 5
summarizes the range of values and the default value of each pa-
rameter. We measure performance by means of (i) query time and
(ii) pruning power. For each setting of parameter values we run
1000 random queries and average the measures. Pruning power
is measured by the average number of times the Rank Refinement
function is called (we call this measure Rank Refinement in the
following). The larger the Rank Refinement value is, the lower the
pruning power of the method is.

Effect of k. To study the effect that the result size k has in the
performance of reverse k-ranks queries, we fix the other param-

Table 6: Results with Different h on DBLP
Hub Percentage h Index Size Query Time (s) Rank Refinement

0.03 1.2G 2.80015 166.702

0.05 1.2G 2.77694 151.608

0.07 1.2G 2.74801 139.514

0.1 1.2G 2.60599 124.591

0.15 1.2G 2.59796 124.591

Table 7: Results with Different h on Epinions
Hub Percentage h Index Size Query Time (s) Rank Refinement

0.03 25M 1.102102 70.431

0.05 27M 1.015720 66.483

0.07 29M 1.007760 63.699

0.1 30M 0.940826 59.044

0.15 32M 0.919234 51.488

eters to their default values (see Table 5), and vary k from 5 to
100. As Figure 6 shows, the evaluation cost increases with k,
which is consistent with the expectation that the search space and
the number of candidates increases with k. Note that the dynamic
approach has significantly reduced average query time for both
datasets, which can be explained by the greatly reduced number of
rank-refinements. The indexing method further reduces the query
time to less than a few seconds, with the help of the precomputed
index. We observe that the index has a greater effect on time for
smaller values of k on DBLP, which can be explained by the fact
that the information needed by the queries has higher chance to
already be present in the index for smaller values of k. Besides,
as we can see, the index works better for Epinions than for DBLP
when k is large. This is because of larger average degrees in DBLP.
In DBLP, even though the number of Rank Refinement calls is re-
duced significantly, the reduction of the average query time is not
as high. This is due to the fact that the index mainly helps to avoid
rank refinements that are cheap (they correspond to cases where
the resulting rank is low). DBLP is a much larger and denser graph
than Epinions and it is often the case that the reverse k-ranks of
a query q are nodes that are quite far from q (i.e., they have low
ranks). Therefore the rank refinements that are not avoided can be
quite expensive, so the numerous cheap rank-refinements that are
prevented due to the index have less profound effect to the query
cost.

In order to assess the effectiveness of our framework, we also ran
tests using a naive reverse k-ranks method, described at the end of
Section 2. Given the query node q, this method naively computes
Rank(p, q) for every node p ∈ V , by running SSSP from p until
q is encountered. The top-k Rank(p, q) values are tracked and
eventually returned to the user. For k = 1, the average runtime
of this naive approach on Epinions is 701.18s with 75878 Rank
Refinements (For DBLP dataset, the average runtime of this naive
approach is over 2000s, which is terminated by us manually), i.e.,
the naive method is significantly slower than the static SDS-tree
approach and the dynamic SDS-tree approach with index.

Effect of hub percentage. The second parameter of which the
effect we investigate is h = H/|V |, i.e., the percentage of hubs in
the index. As shown in Tables 6 and 7, on both datasets, the average
query time and the number of Rank Refinement calls decrease as h
increases. Still, even for small h values, the query cost is not much
higher compared to the default value. On the other hand, the index
size is bounded and does not increase significantly as h increases.

Effect of index percentage. The third parameter that we study is
m = M/|V |, i.e., the percentage of precomputed neighbors for
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Figure 6: Results with Different k

Table 8: Results with Different m on DBLP
Index Percentage m Index Size Query Time (s) Rank Refinement

0.03 1.2G 2.756210 125.358

0.05 1.2G 2.723310 124.952

0.07 1.2G 2.626200 124.669

0.1 1.2G 2.605990 124.591

0.15 1.2G 2.577100 124.291

Table 9: Results with Different m on Epinions
Index Percentage m Index Size Query Time (s) Rank Refinement

0.03 22M 0.970253 60.900

0.05 26M 0.963204 60.201

0.07 28M 0.954575 59.817

0.1 30M 0.940826 59.044

0.15 33M 0.912329 57.963

each node. As shown in Tables 8 and 9, similar to the effect of h,
both the average query time and Rank Refinement calls decrease as
m increases on the two real datasets. Again, the differences are not
dramatic compared to the default value of m.

Effect of hub selection stategy. Next we test the effect of different
hub selection strategies. As Table 10 shows, the Degree First and
the Closeness First strategies are superior compared to the baseline
Random strategy. Although on both DBLP and Epinions, Degree
First is the winner, Closeness First performs quite similarly.

Table 10: Results with Different Hub Selection Strategies
Dataset Random Degree First Closeness First

DBLP
Query Time (s) 2.861070 2.605990 2.665950

Rank Refinement 169.500 124.591 135.132

Epinions
Query Time (s) 1.07950 0.940826 0.948437

Rank Refinement 80.347 59.044 59.409

6.3.2 Bound Analysis

In this experiment, we test the effect of the three components of
the Rank lower bound of Theorem 2. We ran 1000 random queries
on Epinions. For each query and each candidate node, we count
how many times each component wins as a maximum. The results
are shown in Table 11. As we can see, in most cases, the rank of the
parent offers the tight-most bound. In addition, although simple,
height is a useful bound especially when the candidate nodes are
close to the query node (i.e., if the nodes have large degrees, or
when k is small). However, the effect of height declines when the
value of k increases. On the other hand, the Count component is
not very effective when k value is small, since only around 1%

of the pruned cases are due to this bound. Besides, this bound
cannot be applied for directed graphs, and it also has significant
space requirements (i.e. O(|V |)). The Count component is useful
only for candidate nodes that are quite far from the query node (i.e.,
if the nodes have small degrees, or when k is large).

Table 11: Bound Analysis of Theorem 2
k 1 5 10 20 50 100

Height wins 87.74% 39.35% 27.48% 17.96% 9.50% 5.80%

Count wins 0.00% 0.44% 0.71% 1.07% 1.76% 2.38%

Parent wins 12.26% 60.21% 71.81% 80.97% 88.74% 91.82%

We also test the performance on Epinions by choosing 1000
queries with largest degree or fewest degree, using the dynamic
SDS-tree algorithm with the four different bound strategies listed
below:

• Dynamic-Parent: Rank(p,q)≥ max(Rank(p′,q))

• Dynamic-Count: Rank(p,q)≥ max(Rank(p′,q), p.lcount)

• Dynamic-Height: Rank(p,q)≥ max(h, Rank(p′,q))

• Dynamic-Three: Rank(p,q)≥max(h, Rank(p′,q), p.lcount)6

The results are shown in Table 12 and Table 13. They also
demonstrate that Height Component works better for nodes with
large degrees while Count component works better for nodes with
small degrees. As shown in Table 12, Height Component can sig-
nificantly reduce Rank Refinement calls especially for small k val-
ues, while Count component brings in extra cost, which further
increases query time when combining the three components com-
pared to when using only the Height Component (an exception is
the case of a large k value, i.e. k=100). On the other hand, the
Count Component works better when the degree of the query node
is low (i.e. Table 13) and the value of k is large.

In general, the rank of the parent offers the tight-most bound,
while the Height Component helps when k is small or the query
node’s degree is large (i.e., candidate nodes are close to the query
node). The Count Component is the least useful, being effective
only when k is large or the query node has a small degree.

6Here we use the same symbol as in Section 4, where the depth
of node p is h, node p′ is the parent node of node p, and node
p has been visited during the rank refinements of other nodes for
p.lcount times before the refinement of node p itself.
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Table 12: Results with Different Bound Strategies Tested on Queries with Max Degree

k 1 5 10 20 50 100

Dynamic-Parent
Query Time (s) 0.001347 0.001348 0.001388 0.001586 0.003025 0.006705

Rank Refinement 124.494 125.208 134.046 193.684 744.034 1738.360

Dynamic-Count
Query Time (s) 0.001385 0.001386 0.001419 0.001603 0.002872 0.006229

Rank Refinement 124.211 124.913 133.425 189.876 690.931 1554.540

Dynamic-Height
Query Time (s) 0.000584 0.000618 0.000687 0.000856 0.001507 0.004156

Rank Refinement 1.000 5.096 11.048 30.802 185.770 584.523

Dynamic-Three
Query Time (s) 0.000645 0.000680 0.000743 0.000917 0.001541 0.004076

Rank Refinement 1.000 5.096 11.046 30.542 178.782 541.056

Table 13: Results with Different Bound Strategies Tested on Queries with Min Degree

k 1 5 10 20 50 100

Dynamic-Parent
Query Time (s) 0.001581 0.105760 0.258846 0.533142 1.388120 2.738640

Rank Refinement 1.568 20.987 32.134 56.732 134.454 253.125

Dynamic-Count
Query Time (s) 0.001599 0.100026 0.269425 0.513132 1.318810 2.706620

Rank Refinement 1.568 20.712 31.827 56.443 132.923 248.364

Dynamic-Height
Query Time (s) 0.001614 0.106397 0.271879 0.500304 1.358450 2.736410

Rank Refinement 1.359 14.27 28.595 54.818 134.091 253.103

Dynamic-Three
Query Time (s) 0.001668 0.111674 0.257887 0.499597 1.274270 2.696320

Rank Refinement 1.359 14.229 28.411 54.576 132.588 248.342

6.3.3 Index Update Analysis

In the next experiment, we evaluate the effectiveness of index
updates. We randomly select 6,000 queries for each of the two
real datasets and applied these queries in four different ways. We
divided the 6,000 queries into n sets of the same size, i.e., for
n = 6, 3, 2, 1, each set has 1,000, 2,000, 3,000, 6,000 queries
respectively. Then, we run the Dynamic SDS-Tree with Index
method n times and computed the average query time (including
index update time) as well as the average number of Rank Refine-
ment calls. All four different times apply the same 6,000 queries
in the same order, the only difference being that when n > 1, the
index is initialized (i.e., reset) multiple times. For example, when
n = 6, the index is initialized and updated during the first 1,000
queries, then re-initialized, for the next 1,000 queries, etc. The ob-
jective is to understand whether and how the index performance
improves as the index gets updated. Table 14 shows the average
runtime and conducted rank-refinements per query. We can see
that the more the index evolves the more rank refinements can be
avoided and the more the average query time decreases.

Table 14: Results with Index Update

Dataset Query Time (s) Rank Refinement

DBLP

1,000 2.6287438 130.255
2,000 2.530356 126.634
3,000 2.486031 123.263
6,000 2.228565 115.641

Epinions

1,000 1.179105 61.407
2,000 0.985524 50.599
3,000 0.924317 45.206
6,000 0.544288 34.958

Table 15 shows the cost for initializing the index for various val-
ues of h and m. Although the times are quite high (especially for
large values of h and m), this one-time cost pays off, because the
index can help to achieve substantial cost savings for reverse k-
ranks queries, as already shown.

Table 15: Index Construction Time (hours)

h m DBLP Epinions

0.03 0.1 2.68 0.01

0.05 0.1 4.08 0.02

0.07 0.1 6.21 0.03

0.1 0.1 8.94 0.04

0.15 0.1 12.94 0.06

0.1 0.03 2.95 0.01

0.1 0.05 3.92 0.02

0.1 0.07 6.40 0.03

0.1 0.1 8.94 0.04

0.1 0.15 12.79 0.06

6.3.4 Bichromatic Queries

Although our solutions are only described in a monochromatic
context, they are readily available for the case where the graph
nodes are divided into two classes and the nodes are ranked with
respect to where they are ranked by nodes that belong to the other
class. Examples of bichromatic top-k, reverse top-k and reverse
k-ranks queries have been shown at the case study of Section 6.2.2.
In this section, we evaluate the performance of our methods for
bichromatic reverse k-ranks queries. For the sake of completeness,
we first provide a problem definition.

DEFINITION 3. (Bichromatic Rank(s,t)) Consider a bichro-

matic weighted graph G = (V,E), consisting of a set of nodes

V = V1 ∪ V2 and a set of edges E. Each edge in E carries a

non-negative weight. For any two nodes s ∈ V1, t ∈ V2, let d(s, t)
denote the shortest path distance from s to t, which is defined by

summing up the weights of the edges along the shortest path from s
to t. Let S ⊂ V2 be the set of nodes that satisfy ∀pi ∈ S, d(s, pi) <
d(s, t) and ∀pj ∈ (V2 − S − {t}), d(s, pj) ≥ d(s, t). Then,

Rank(s, t) = |S| + 1 where S ⊂ V2 and |S| is the cardinality of

S.

DEFINITION 4. (Reverse k-Ranks Query on a Bichromatic Graph)
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Given a bichromatic weighted graph G = (V,E), where V =
V1 ∪ V2, a query node q ∈ V2 and a positive integer k, the reverse

k-ranks query on a bichromatic graph returns a subset T of V1,

such that |T | = k and ∀pi ∈ T , ∀pj ∈ (V1 − T ), Rank(pi, q) ≤
Rank(pj , q).

In a reverse k-ranks query on a bichromatic graph, the query
node is of one type, while the returned results are of another type.
All our proposed methods can be used here with little modification:
only for the nodes of the same type as the result set we need to do
rank refinement, and only the nodes of the same type as the query
node need to be counted during rank refinement. This is consis-
tent with our case study with the communities and supermarkets;
i.e., the management of a supermarket may use a reverse k-ranks
query to find out which k communities the supermarket has higher
chances to attract.

We use the SF road network (described in Section 6.1) to test
the efficiency of our three proposed methods. We extract from the
graph the nodes which are the nearest ones to 408 real stores and
mark them as store nodes, while all other nodes are considered to
be community nodes. We vary k from 5 to 100 in the experiment
and measure the average query time and the average number of rank
refinements per query, as performance metrics. The results are plot-
ted in Figure 7. As we can see, when k is small, even though the
Dynamic and Dynamic-Indexed methods can reduce the number of
rank refinements, their average query time is not reduced; the cost
of these methods is higher than the static approach for k=5. This
is because the overhead cost by the data structures maintained by
the Dynamic and Dynamic-Indexed methods. However, for larger k
values, the superiority of the dynamic approaches and the index be-
comes apparent. Note that in this case of a sparse graph, the index
approach is much more efficient compared to the static/dynamic
SDS-tree method without index.

The general conclusions from our experimental study are as fol-
lows: (1) The reverse k-ranks query produces more useful results
compared to the top-k query and the reverse top-k in recommen-
dation applications, where a ranked set of objects of certain size
needs to be recommended to the query object q; (2) Our filter-
and-refinement framework is very efficient compared to the naive
approach; (3) In the dynamic SDS-tree method, the parent-based
and height-based bounds have higher applicability and effective-
ness compared to the count-based bound, but count-based bound
also has its applicable scenario; (4) The index is more effective for
sparse graphs and for medium to high values of k.
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Figure 7: Performance on a Bichromatic Network

7. RELATED WORK
Ranking queries have been widely used in many applications and

have many variants. The most general one is the top-k query which
returns the k objects with the highest scores based on a ranking

function. Recently, reverse ranking queries emerged, which rank
from the perspective of result objects, not the query objects.

Top-k query. Top-k queries have already been studied extensively
for decades [10]. They return a list of objects which are ranked us-
ing an aggregate function that applies on their features. The most
famous algorithms for top-k queries are Fagin’s Threshold Algo-
rithm (TA) and No Random Accesses (NRA) [5]. They are de-
signed for rank-combining sorted lists of objects based on different
attributes (features). TA allows both sequential and random ac-
cesses to these lists, whereas NRA allows only sequential accesses.
Both algorithms use bounds for the top-k results, based on the in-
formation accessed so far and terminate as soon as the current top-
k results are guaranteed to be the final ones, aiming at minimizing
the accesses to the input lists. Mamoulis et al. [15] proposed an im-
proved version of NRA, which is designed to minimize the number
of object accesses, the computational cost, and the memory require-
ments of top-k search with monotone aggregate functions. If the
ranking function is defined based on the distance of the objects to a
pivot object, top-k queries are referred to as k nearest neighbor (k-
NN) queries. k-NN queries have extensively been studied in spatial
databases [9]. The single-source shortest path (SSSP) algorithm (a
simple adaptation of Dijkstra’s algorithm) can be used to evaluate
k-NN queries on graphs.

Reverse k-NN query. The reverse k nearest neighbor (RKNN)
query returns a set of query objects that have a given query point as
one of their k nearest neighbors [24]. Preprocessing-based methods
usually leverage index structures for efficient RKNN query evalu-
ation. For example, the R-tree [8] is used for RKNN queries on
spatial data [13, 20]. Yiu et al. [25] studied RKNN on large graphs
using shortest path as the proximity measure. Similar to the reverse
top-k query, which we review next, the result size of RKNN is not
fixed, which may limit its application.

Reverse top-k query. The reverse top-k query returns the ag-
gregate functions which rank a given query object highest. Vla-
chou et al. [21] presented an efficient threshold-based algorithm
that eliminates candidates, without having to evaluate any top-k
queries using the result functions. Furthermore, they introduced an
indexing structure based on materialized reverse top-k views in or-
der to speed up the computation of reverse top-k queries. These
techniques were improved later in [22]. Ge et al. [6] proposed
methods that compute all top-k queries in batch by applying the
block indexed nested loops paradigm and a view-based algorithm.
Yu et al. [26] studied reverse top-k queries when applied on large
graphs, using Random Walk with Restart distance between nodes
as the ranking function. Essentially, such reverse top-k queries on
graphs are equivalent to RKNN on graphs, but using a different dis-
tance measure. As explained in [27], reverse top-k (and RKNN)
queries only give results for query objects which are ‘hot’ (i.e., eas-
ily reachable by many other nodes), while most ‘cold’ objects get
empty or too small result sets.

Reverse k-ranks query. To solve the aforementioned problem of
RKNN queries, Zhang et al. [27] propose a new ranking query: the
reverse k-ranks query in vector spaces. The reverse k-ranks query
returns the k objects with the smallest Rank(w,q) values, where
Rank(w,q) denotes the number of objects ranking higher than q for
the same ranking function w. As opposed to reverse top-k and
RKNN queries, the result set size of a reverse k-ranks query is
fixed.

8. CONCLUSION
This paper is the first-time ever study of reverse k-ranks queries
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over large graphs. We have shown through real-life case stud-
ies that reverse top-k queries may produce unsatisfactory results;
therefore, there is a need for the efficient support of reverse k-ranks
queries. Then, we proposed a filter-and-refinement framework for
evaluating reverse k-ranks queries, based on the construction of a
SDS-tree and the dynamic refinement of its nodes. We also pro-
posed an indexing technique that can further improve the perfor-
mance of the framework. Our experimental evaluation which uses
three real large-scale graphs of different characteristics confirms
the efficiency of the proposed techniques. In the future, we plan
to study reverse k-ranks queries for other node similarity measures
(i.e. PageRank, Personalized PageRank and SimRank), which re-
quire radically different approaches.
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