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ABSTRACT CCS CONCEPTS

Pre-trained language models (PLMs) have demonstrated strong
performance in sequential recommendation (SR), which are uti-
lized to extract general knowledge. However, existing methods still
lack domain knowledge and struggle to capture users’ fine-grained
preferences. Meanwhile, many traditional SR methods improve this
issue by integrating side information while suffering from informa-
tion loss. To summarize, we believe that a good recommendation
system should utilize both general and domain knowledge simul-
taneously. Therefore, we introduce an external knowledge base
and propose Knowledge Prompt-tuning for Sequential Recommen-
dation (KP4SR). Specifically, we construct a set of relationship
templates and transform a structured knowledge graph (KG) into
knowledge prompts to solve the problem of the semantic gap. How-
ever, knowledge prompts disrupt the original data structure and
introduce a significant amount of noise. We further construct a
knowledge tree and propose a knowledge tree mask, which re-
stores the data structure in a mask matrix form, thus mitigating the
noise problem. We evaluate KP4SR on three real-world datasets, and
experimental results show that our approach outperforms state-of-
the-art methods on multiple evaluation metrics. Specifically, com-
pared with PLM-based methods, our method improves NDCG@5
and HR@5 by 40.65% and 36.42% on the books dataset, 11.17%
and 11.47% on the music dataset, and 22.17% and 19.14% on the
movies dataset, respectively. Our code is publicly available at the
link: https://github.com/zhaijianyang/KP4SR.
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1 INTRODUCTION

Recommendation systems aim to suggest desirable items among
an extensive item collection to target users, thereby alleviating
the problem of information overload on the internet. Traditional
recommendation algorithms, such as collaborative filtering [15],
only mine the static correlation between users and items, ignoring
the dynamic changes in user preferences implied in the historical
interaction sequence. Therefore, the sequential recommendation
that mines the dynamic changes in user preferences has become
an important research direction in recommendation systems.
Some early studies modeled the historical behavior sequences
of users using Markov chains [29, 31], but they often struggle to
handle complex sequential patterns. With the development of deep
learning, deep neural networks have achieved great success in
sequential recommendation [13, 33]. Among them, models based
on self-attention mechanisms, which adaptively assign weights to
user interaction sequences, have become competitive mainstream
solutions [5, 19, 32]. However, most of these methods only model
the IDs of users and items, considering only the user’s sequential
preferences, and cannot capture the user’s fine-grained preferences.
Many studies have introduced side information into SR [16, 44,
47] to address these issues. Some methods extract item attribute
information [44, 47] and fuse them at different stages. For example,
FDSA [44] uses different self-attention blocks to encode items and
side information and only fuses their representations in the final
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. Here is the watching history of Tom: Cast Away, Back to the Future, try to recommend next
item to the user.
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Knowledge Graph

Figure 1: Comparison between P5 [9] (up) and our KP4SR
(down), which introduces domain knowledge. We introduce
an external knowledge graph and transform it into knowl-
edge prompts to bridge the semantic gap between textual
and structured data, which enriches the semantic features
of items and improves the accuracy and explainability of
recommendation results.

stage. S°Rec [47] integrates side information through pre-training,
However, inefficient feature fusion methods may result in the loss
of useful information. Therefore, these methods focus on finding
efficient solutions for fusing item embeddings and side information
embeddings. There are also some methods that introduce external
KG to assist the recommendation process [16, 17] and learn entity
and relation embeddings through knowledge graph embedding
(KGE) [2, 23] techniques. However, the primary optimization objec-
tive of KGE is the completion or prediction of edges in the KG rather
than recommendation tasks. Overall, although side information can
benefit recommendations, how to effectively incorporate side in-
formation into the recommendation process is still a challenging
and unresolved problem.

Recently, PLMs have achieved great success in natural language
processing (NLP) [3, 43]. By learning general knowledge from large
corpora through self-supervised tasks, many researchers have uti-
lized PLMs to solve recommendation tasks [9, 24, 35]. For example,
PEPLER [21] used GPT-2 [27] to generate more natural recommen-
dation explanations by treating users and items as personalized
prompts. P5 [9] transformed the recommendation task into an NLP
task and unified multiple recommendation tasks, such as SR, in
one framework using the T5 [28] model. Although these methods
have achieved good results, PLM-based RS methods still face diffi-
culties in capturing complex user preferences because PLMs lack
domain knowledge regarding users and items. Therefore, intro-
ducing domain knowledge is necessary when using PLMs to solve
recommendation tasks. A straightforward and simple approach is
to describe domain knowledge using natural language text and then
use the powerful reasoning ability of PLMs to improve recommen-
dation performance, as shown in Figure 1. However, there are two
challenges with this approach: 1) How to convert structured knowl-
edge graphs into text sequences. 2) Converting into text sequences
may destroy the original data structure and how to deal with the
noise caused by irrelevant entities and relationships.
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Inspired by prompt learning in NLP [3, 41], we propose Knowl-
edge Prompt-tuning Sequential Recommendation (KP4SR) to over-
come the above challenges. Specifically, we improve P5 [9] by de-
signing a masked personalized prompt (MPP) template set to con-
vert the SR task into a pre-training task, which not only accelerates
the convergence speed but also improves the model performance.
Then, we design a set of relation templates to convert triplets into
triplet prompts, which are combined to form knowledge prompts
(KP). Finally, we propose prompt denoising (PD), constructing a
knowledge tree and a knowledge tree mask to eliminate the mutual
influence of irrelevant triplets. Extensive experimental results show
that our method outperforms state-of-the-art methods on multiple
metrics in three real-world datasets.

e We propose KP4SR, which, to the best of our knowledge,
is the first work that transforms knowledge graphs into
knowledge prompts to improve SR performance.

e We construct KP, which addresses the problems of semantic
difference between structured knowledge data contained in
the KG and the sequential text data used by PLMs and allows
for easy utilization of high-order information from the KG.

e We propose PD, which mitigates knowledge noise by restor-
ing the KG data structure in the form of a mask matrix.

e We conduct extensive experiments on three datasets, and
the results demonstrate the effectiveness of our method. In
addition, ablation experiments show that transforming the
SR task into an NLP task still follows the general pattern
of NLP, which indicates the great research prospects and
research value of PLMs in improving the performance of
recommendation systems.

2 RELATED WORK

2.1 Sequential Recommendation

Early studies utilized Markov Chains [29, 31] to model users’ his-
torical interaction sequences, but they often struggle with complex
sequential patterns. Later, deep neural networks have shown strong
performance in SR. GRU4Rec [13] leverages recurrent neural net-
works to encode user interaction sequences into hidden states to
improve recommendation performance. Caser [33] uses horizon-
tal and vertical convolutional filters to learn multi-level patterns
and user preferences. Attention-based approaches allocate different
weights to determine the relevance between users’ historical in-
teractions and target items, capturing users’ dynamic preferences,
such as SASRec [19], BERT4Rec [32], and Transformers4Rec [5].
CLSR [46] and SLi-Rec [42] improve recommendation performance
by modeling users’ long-term and short-term preferences. CL4SRec
[39] introduces contrastive learning, which learns better sequence
representations through self-supervised signals at the user behav-
ior sequence level. However, they only model the IDs of users and
items and cannot capture users’ fine-grained preferences.

2.2 Side Information for SR

Many studies have used side information to improve SR, which
mainly includes item attribute information and external knowl-
edge base. For example, FDSA [44] encodes items and side infor-
mation using different self-attention blocks, and integrates their
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Figure 2: The overall framework of KP4SR. Firstly, we use a masked personalized prompt (MPP) template to transform the
user-item interaction sequence into MPP (top-left). Then, we use relationship templates to transform the knowledge graph
into a knowledge prompt (KP) (bottom-left). Finally, we construct a knowledge tree and propose a knowledge tree mask to

alleviate the problem of knowledge noise (right).

representations in the final stage. S>Rec [47] designs four auxiliary
self-supervised objectives, utilizing the principle of maximum mu-
tual information (MIM) to learn the correlation between attributes,
items, sub-sequences, and sequences. DIF-SR [40] believes that early
integration limits the expressive power of the attention matrix and
the flexibility of gradients. It transfers the side information from
the input to the attention layer and then decouples the attention
calculation between various side information and item representa-
tions. KSR [16] integrates the RNN-based network and Key-Value
Memory Network (KV-MN) together, and uses KG to capture users’
fine-grained preferences. DHIMN [38] applies a message-passing
layer based on Dynamic Heterogeneous Information Networks
(DHIN) to capture advanced semantic knowledge in the KG, but
ignores the heterogeneous information of item relationships in the
KG. Compared to them, our method converts KG into text sequences
and utilizes the powerful ability of PLMs to improve SR.

2.3 PLMs for Recommendation

PLMs have achieved tremendous success in natural language pro-
cessing (NLP) [3, 6, 43], and many researchers have started to use
PLM:s to solve recommendation tasks [24]. PEPLER [21] employs
GPT-2 [27] to generate personalized explanations for recommenda-
tions by using users and items as personalized prompts. METER
[8] further incorporates visual information to improve the quality
of recommendation explanations. In addition, SpeedyFeed [37] and
NRMS [36] utilize PLMs to enhance news recommendations. P5
[9] transforms recommendation tasks into NLP tasks and unifies
multiple recommendation tasks in one framework using T5 [28].
Some works propose knowledge-enhanced dialogue recommenda-
tion systems and use PLMs to generate smoother conversations

[34, 35]. However, they used Graph Convolutional Networks (GCN)
to model KG information, which faces the semantic gap that exists
in natural language.

2.4 Prompt Learning

Prompt learning involves designing prompts for specific tasks to
reframe downstream tasks as pre-training tasks, thus addressing
the gap between pre-training tasks and downstream targets [10,
24]. Early research relied on manually crafted discrete prompts to
guide pre-training language models [3, 28]. Recently, many works
have focused on automatically generating discrete prompts for
specific tasks [7, 18]. However, these methods still rely on generative
models or complex rules to control prompt quality. In contrast,
some works propose using learnable continuous prompts that can
be directly optimized [20, 22]. Some researchers have incorporated
prompt learning into recommendation systems, designing specific
personalized prompts for different tasks, such as PEPLER [21] and
Mé6-Rec [4]. Our KP4SR is an improvement on P5[9], and their
personalized prompts do not convert the recommendation task into
a pre-training task, which is data inefficient.

3 PROBLEM DEFINITION

We first introduce the symbols used in this paper. A typical rec-
ommendation scenario usually consists of a user set U and an
item set V. By sorting the interactions between users and items
by timestamps, we can obtain the interaction sequence S;, of user
u, which can be represented as S, = {U;‘,Ug, Urul}, where |u|
denotes the length of the sequence, u € U and v € V. Our goal
is to predict the next item Uru\ﬂ that the user is likely to interact
with. To describe our method more clearly, we omit the subscripts
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and superscripts and simply define the user’s interaction sequence
as {A,B,C,D,E,...}.

KG is a structured knowledge base that contains a set of triples,
which can be defined as KG = {(h,r,t) | h,t € E,r € R}, where
& is the set of entities and R is the set of relations. A triple (h,r, t)
represents a connection between the head entity h and the tail
entity ¢ through the relation r. We assume that each item in the
recommendation system has a corresponding entity connection,
ie., V € &. Therefore, for each item v, we can obtain an n-hop
knowledge subgraph G} centered on v.

Our goal is to incorporate domain knowledge from KG into
PLMs to mine users’ complex preferences. For instance, given a
basic input sample: "Tom has watched Cast Away, Back to the Future,
and is going to watch [mask].", we need to input the relevant KG
information, such as (Cast Away, film.genre, Adventure). Therefore,
the first challenge we face is how to input structured KG into
PLMs while bridging the semantic gap between sequence text and
structured knowledge. The second challenge is how to alleviate
knowledge noise, as not all knowledge is helpful, and irrelevant
and noisy knowledge can affect model performance [25]. In Section
4, we will elaborate on our method.

4 METHODOLOGY

4.1 Overview

We propose KP4SR, which transforms a structured KG into knowl-
edge prompts to improve SR. It mainly consists of two modules:
prompt construction module (Section 4.2) and prompt denoising
module (Section 4.3). The overall framework is shown in Figure 2.

The prompt construction module consists of the masked per-
sonalized prompt (MPP) and knowledge prompt (KP). Firstly, we
construct a set of MPP templates by converting the user-item in-
teraction sequence into MPP. This allows us to transform the rec-
ommendation task into a natural language cloze task. Then, we
construct a set of relationship templates to convert triples into
triple prompts and further combine these triple prompts to form KP.
This enables us to transform structured KG into text sequences. For
the prompt denoising module, we first construct a knowledge tree
based on the MPP and triple prompts, and then design the knowl-
edge tree mask to alleviate the noise problem caused by irrelevant
triple prompts. We will provide more details on the method in the
following sections.

4.2 Prompts Construction

Prompt learning has achieved great success in NLP, and many re-
searchers have applied it to recommendation systems [21, 35]. In
this section, we construct a collection of MPP templates and rela-
tionship templates, which transform recommendation data and KG
into textual prompts. This not only eliminates semantic differences
between them but also utilizes generic knowledge in PLMs.

4.2.1 Masked personalized prompts. In recommendation systems,
personalized prompts refer to personalized fields for different users
and items [9, 21]. Inspired by P5 [9], we construct a collection of
MPP templates for SR, which helps the model discover various
aspects of users and items. Specifically, MPP can transform the
recommendation task into a pre-training task, namely a cloze task,
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User {user} has previously watched
{purchase_history} , and is going to | = | {target item}
watch [mask] next.

[ Triple: ([X], film.genre, [Y]) ]—'[ The genre of [X] is [Y]. ]

Figure 3: Examples of prompt templates. We can fill the data
of user-item interaction sequences into templates to obtain
MPP (up). For the relation template, we can obtain a triple
prompt by replacing [X] and [Y] with the head entity and
tail entity, respectively (down).

as shown in Figure 3. For a user u and his/her interaction sequence
{A,B,C, D, E, F}, we can fill in the corresponding fields in the tem-
plate to obtain: User u has previously watched {A, B, C, D, E}, and
is going to watch [mask] next. Here, [mask] is the next item to be
predicted, i.e., the target item F.

By constructing input-output pairs using MPP, we can leverage
PLMs to extract rich semantics into user and item tokens, which
will help capture users’ dynamic preferences. MPP can transform
the recommendation task into a pre-training task, improving task
performance when downstream task data is sparse. In addition, it
can also increase data utilization efficiency and accelerate model
convergence.

4.2.2  Knowledge prompts. Using KG as side information in recom-
mendation systems can significantly improve their performance.
However, as structured data, KG cannot be directly input into PLMs,
and there is a semantic gap between structured KG and sequence
text. Therefore, we propose transforming the KG into a text se-
quence to address these issues.

For a triple (h,r,t), where h represents the head entity, r rep-
resents the relation, and ¢ represents the tail entity, we manually
design a relation template for each relation r € R to express the
semantics of the corresponding triple. For example, in Figure 3, we
design a template for the relation film.genre: The genre of [X] is [Y].
Then for the triple (Cast Away, film.genre, Adventure), we replace
[X] and [Y] with the head and tail entities, respectively, to obtain a
basic triple prompt: "The genre of Cast Away is Adventure.".

For an entity h, we define the set of triples S; = {(h, r1,t1), (h, r2,
t2), ...} with h being the head entity as the 1-hop triple set of entity
h, where {t1, t2, ...} is the set of tail entities of entity h. Addition-
ally, tail entities can also be treated as head entities, and they can
have multiple relationships and tail entities as well. In Sy, there are
multiple tail entities {#1, f2, ...}. For tail entity #1, its set of 1-hop
triplets can be represented as S;1 = {(t1,r11, t11), (#1, 712, t12)5 - }-
For tail entity 9, its set of 1-hop triplets can be represented as
S = {(t2, r21, t21), (£2, 22, t22), ...}, and so on. Then, The set of 2-
hop triplets for entity h can be represented as S = {Ss1, S¢2, ...}
We convert each triple into a triple prompt, which can be used to
generate multi-hop triple prompts for entity h. We then query with
the multi-hop triple prompts for each item and combine them into
a text sequence to construct KP.

By constructing relation templates, we can transform structured
KG into text sequences to extract multi-level information simply.
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4.2.3  Fused Prompt. After obtaining MPP and KP, we directly con-
catenate them as the input of PLM. Specifically, MPP can be rep-
resented as: Xz = {x1,x2, ..., [mask], ..., x;, }, where x; is the i-th
token of the text sequence, m represents the length of the text in
tokens, and [mask] represents the next item to be predicted. KP
can be represented as: Xj. = {x1, X2, ..., xn}. The final input is:

Xprompt = [SPE]Xq[SPE]X[SPE]. (1)

Here, [SPE] denotes a special token.

By inputting the MPP and KP into PLMs, we can integrate the
recommendation task into a full language environment and use the
powerful ability of PLMs to extract users’ fine-grained preferences.

4.3 Prompt Denoising

Converting KG to knowledge prompts can disrupt the original data
structure and introduce a large amount of irrelevant and noisy
knowledge. For example, the two triple prompts "The genre of hy
is t1." and "The director of hy is t2." have different head and tail
entities and are not logically or semantically related. The mutual
influence between them will generate knowledge noise. Especially
when the prompts contain multi-hop triple prompts, this noise will
even be amplified. To alleviate the noise problem, we use MPP and
triple prompts to construct a knowledge tree, and then propose the
knowledge tree mask for denoising.

4.3.1 Konwledge tree construction. To have a clear understanding
of the structure and semantic relationships between triple prompts,
we construct a knowledge tree as shown in Figure 2.

The root node of the knowledge tree is the MPP, which contains
multiple items that the user has interacted with. Therefore, the
knowledge tree has multiple knowledge subtrees. Each knowledge
subtree is composed of an entity and its multi-hop triple prompts.
Suppose that the MPP contains two items corresponding to entities
A and B, then the knowledge tree consists of two knowledge sub-
trees, namely subTree(A) and subTree(B). Suppose XX; is a triple
prompt consisting of (X, r, X;), then the root node of knowledge
subtree Tree(A) is entity A, and the child nodes of A are its 1-hop
triple prompts, AA; and AA;. The 2-hop triple prompts of entity A
are the 1-hop triple prompts of entities A; and Az, namely, A1A11,
A1A12, and AzAz;. For example, in Figurel, the movie "Cast Away"
can be represented by two triplets: (Cast Away, genre, Adventure)
and (Cast Away, starred, Tom Hanks). We use A to represent "Cast
Away", A; to represent "Adventure", and Ay to represent "Tom
Hanks" By introducing the relationship templates "The genre of
[X] is [Y]" and "[X] starring [Y]", we obtain two triplet prompts
for A: "AA;: The genre of Cast Away is Adventure. and "AAjy: Cast
Away starring Tom Hanks!". AA; and AA; are 1-hop triplet prompts
for A.

Traversing the knowledge tree in a hierarchical manner yields
a sequence of prompts composed of personalized and knowledge
prompts.

4.3.2  Konwledge tree mask. The knowledge tree presents the log-
ical and semantic relationships between MPP and triple prompts.
Triple prompts without logical and semantic relationships will gen-
erate much noise, and we should limit their mutual influence. For
this purpose, we propose a knowledge tree mask mechanism.
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Figure 4: Illustration of prompt denoising. For any two triple
prompts, if they contain the same entities, they are visible
to each other; otherwise, they are invisible to each other.

Specifically, for the input sequence composed of MPP and KP, we
use the mask matrix to limit the mutual influence of input tokens, as
shown in Figure 2. The transformer-based language model usually
uses an attention mask matrix to deal with the input problem of
non-fixed-length sequences, which is formulated as follows:

Qi+1,Ki+1, Vi+1 — hiWq, hiWk, hiWy, (2)
Qi+1 Ki+1T +M
Vi
Here, W4, wk , WY are trainable parameters of the model, K is the
hidden state output of the i-th layer, dy. is the scaling factor, and M is
the attention mask matrix. By designing the attention mask matrix

M, we can control the attention between input tokens. Therefore,
we use the knowledge tree to design the mask matrix M, specifically:

R = softmax Vit 3)

0 Xi,Xj € No
0 xi € N1,xj € Np

M;j = (4)

0 x,-eNp,xjeNcorxieNc,xjeNp'
—oo  otherwise

Here, x; and x; are any two tokens in the prompt sequence, 0
means that the i-th token can see the j-th token, —co means that
the i-th token cannot see the j-th token, N, represents a node in
the knowledge tree, N; and Ny are nodes with the same parent
node, and Ny and N are a pair of parent and child nodes with a
parent-child relationship in the knowledge tree.

The mask matrix M indicates that, for any node, it can see itself,
parent nodes, child nodes, and sibling nodes. For example, the triple
prompt AA; in Figure 4 can see the entity A, triple prompts AAj,
AjA11,and A1Aj2. It can be seen that any node and its visible nodes
have the same entity, and invisible nodes contain different entities.
Therefore, the knowledge tree mask matrix can keep the original
knowledge structure of the knowledge prompt, solve the problem
of irrelevant and noisy knowledge, and improve the model’s per-
formance.

4.4 Training and Recommendation

We employ the T5 model architecture [28],which is an encoder-
decoder-based pre-trained language model using mask prediction
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Table 1: Statistics of the datasets.

Stats. books music movies
# Users 70,463 70,774 69,878
#ltems 24,921 335,619 10,130
# Interactions 845,321 8,768,434 9,991,477
Density 48x107% | 37x107% | 1.4x 1072
Knowledge Graph
# Relations 16 6 44
# Entities 103,695 1,434,216 123,306
# Triples 402,543 2,724,800 954,004

as the pre-training task. We construct personalized prompts with
masks, transforming the recommendation task into a mask predic-
tion task similar to the pre-training task of PLMs. The loss function
is given by:

lyl
Lo == 108Py (y; | y<j Xprompt) (5)
j=1
Here, 6 represents the model parameters, and y represents the
predicted output.
During the recommendation stage, we use the same method as
P5 [9], which applies beam search to generate a list of potential
next items.

5 EXPERIMENTS

We conduct extensive experiments on three publicly available datasets
to answer the following research questions:

e RQ1: Does KP4SR outperform the current state-of-the-art
SR methods?

e RQ2: Does the conversion of the recommendation task to
an NLP task follow the general patterns of the NLP field?

e RQ3: What is the impact of each component and hyperpa-
rameters in KP4SR?

e RQ4: Does KP4SR have generalization capability for un-
known templates?

5.1 Experiments Settings

5.1.1 Datasets. We conduct experiments on three public datasets:
Amazon books [12], LFM-1b [11], and Movielens-10M [30]. These
datasets record the interaction information between users and
books, music, and movies.

The KG we used is from KB4Rec [45], which links the above
three widely used datasets with the widespread knowledge base
Freebase[1] to provide side information for recommendation sys-
tems. We apply the same preprocessing steps as P5 [9] and filter
out all users and items that appeared less than five times. For the
LFM-1b dataset, we filter out tracks that were played less than 10
times. In addition, we search Freebase and convert all entity IDs to
text. However, for items, we still use item IDs as inputs and outputs
according to the approach in [9]. The statistics of the preprocessed
datasets are shown in Table 1.

5.1.2  Evaluation. Following the prior work [9], we evaluate our
KP4SR using Hit Rate@k (HR@k) and Normalized Discounted Cu-
mulative Gain@k (NDCG@k), and report HR@5, 10 and NDCG@5,
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10. Higher values indicate better performance for all metrics. We
use the leave-one-out strategy to evaluate the performance of each
method, which has been widely used in many related works [9].
Specifically, for each user-item interaction sequence, the last two
items are kept as validation and test data, and the rest of the items
are used to train the SR model. To make a fair comparison, we eval-
uate the model performance in a fully ranking manner. The ranking
results are obtained on the entire item set rather than sampled
results.

5.1.3 Baselines. We choose to use the following state-of-the-art
SR methods as baselines in our experiments:

e Caser [33]: A CNN-based model that uses horizontal and
vertical convolution filters to learn multiple patterns and
user preferences.

e GRU4Rec*: GRU4Rec [13] is a session-based RS that uses
RNN s to capture sequential patterns. GRU4RecF [14] incorpo-
rates item attribute information. GRU4RecKG is an extension
of GRU4Rec that connects items and their corresponding KG
embeddings as inputs.

o BERT4Rec [32]: A bidirectional self-attention network that
models user behavior sequences using cloze tasks.

e SASRec*: SASRec [19] is an attention-based model that uses
self-attention networks for SR. SASRecF is an extension of
SASRec that connects items and their features as inputs.

e KSR [16]: An RNN and memory-based model that captures
attribute-level user preferences using KG.

o FDSA [44]: A self-attention-based model that integrates het-
erogeneous features into a feature sequence for SR.

e S3Rec [47]: A self-supervised learning-based model that has
four carefully designed optimization objectives for learning
correlations in raw data.

e DIF-SR [40]: An attention-based model that performs se-
quence recommendation by decoupling side information
fusion.

e P5 [9]: A PLM-based recommendation system that unifies
multiple recommendation tasks into a single framework
through personalized prompt sets.

5.1.4 Implementation Details. Our KP4RS utilizes a pre-trained
T5 model as its backbone. For KP4RS, the encoder and decoder
have six layers, a model dimension of 512, and 8 heads of attention.
During the training phase, we use mixed precision to accelerate
the training speed. We use 4 Ascend 910 NPUs with a batch size of
64. We use the AdamW optimizer [26] with a peak learning rate of
le-3 and set the maximum length of the input tokens to 512. Due
to the length limitation of the input (see Appendix for details), we
only study the knowledge prompts within three hops.

For all baselines, if negative samples are needed to calculate
the next item prediction loss during the training phase, we follow
the usual practice of randomly selecting a negative sample for
each interaction. For a fair comparison, the maximum interaction
sequence length for all experiments is set to 5 unless otherwise
specified.
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Table 2: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the second
highest results of all methods.

Methods books music movies
NDCG@5 NDCG@10 HR@5 HR@10 | NDCG@5 NDCG@10 HR@5 HR@10 | NDCG@5 NDCG@10 HR@5 HR@10
Caser 0.0220 0.0294 0.0356 0.0587 0.0165 0.0232 0.0271 0.0477 0.0309 0.0462 0.052 0.0999
GRU4Rec 0.0235 0.0317 0.0380 0.0635 0.0222 0.0317 0.0374  0.0668 0.0378 0.0554 0.0643  0.1191
BERT4Rec 0.0204 0.0282 0.0323 0.0567 0.0242 0.0356 0.0426 0.0781 0.0328 0.0488 0.056 0.1062
SASRec 0.0254 0.0362 0.0466 0.0803 0.0327 0.047 0.0634  0.1078 0.0312 0.0459 0.0538  0.0994
GRU4RecF 0.0240 0.0321 0.0381 0.0633 0.0266 0.0377 0.0441 0.0788 0.0372 0.0551 0.0644 0.1204
GRU4RecKG 0.0233 0.0314 0.0373 0.0625 0.0222 0.0313 0.0380 0.0664 0.0374 0.0562 0.0650  0.1237
KSR 0.0240 0.0317 0.0383 0.0623 0.0330 0.0411 0.0504  0.0757 0.0394 0.0574 0.0679  0.1242
FDSA 0.0221 0.0309 0.0355 0.0631 0.0185 0.0261 0.0304 0.0539 0.0354 0.0523 0.0604 0.1132
SASRecF 0.0238 0.0319 0.0379 0.0631 0.0310 0.0418 0.0503 0.0839 0.0294 0.0441 0.0503  0.0964
S3Rec 0.0249 0.0356 0.0452 0.0783 0.0301 0.0443 0.0524  0.0968 0.0306 0.0461 0.0536  0.1019
DIF-SR 0.0298 0.0416 0.0584  0.0948 0.0573 0.0678 0.1110 0.1433 0.0492 0.0689 0.0875  0.1489
P5 0.0433 0.0501 0.0604  0.0813 0.0815 0.0879 0.0994 0.1193 0.0618 0.0738 0.0888  0.1261
KP4SR 0.0609 0.0691 0.0824 0.1077 0.0906 0.0975 0.1108  0.1319 0.0755 0.0891 0.1058  0.1481

5.2 Overall Performance Comparison (RQ1)

The results of different methods on three datasets are shown in
Table 2. According to the experimental results, we can see that, com-
pared to the five SR methods (Caser, GRU4Rec, BERT4Rec, SASRec,
and P5) that do not integrate side information, P5 outperforms other
methods by a large margin. We believe there are two main reasons
for this: firstly, P5 is a PLM-based method with better initialization
parameters and a larger model that can accommodate more infor-
mation. Secondly, P5 converts the recommendation task into an
NLP task, which can leverage the general knowledge in PLMs. This
indicates that PLMs have great potential for application in solving
recommendation tasks. SASRec ranks second to P5 and performs
well on books and music datasets, but it underperforms on the
movie dataset. This suggests that different datasets have varying
sequence patterns, impacting the performance of SR methods.

Some SR methods that integrate side information do not achieve
better performance. For example, GRU4RecF and GRURecKG fuse
item attribute information and KG information at an early stage,
and they do not achieve better results. This is because early fea-
ture fusion may result in the loss of useful information. Similarly,
SASRecF directly connects items and item features as input, and
they also suffer from the information loss issue. In contrast, DIF-SR
achieves much better results than other baselines. This is because
DIF-SR decouples the fusion of side information, moves the side
information from input to attention layers, and further decouples
the attention calculation of various side information and item rep-
resentations.

Finally, it is clear that our KP4SR achieves the best results in
most evaluation metrics on all three datasets, especially outperform-
ing other methods by a large margin on the NDCG metric. KP4SR
and P5 use the same PLM architecture, but our method performs
much better than P5 on all datasets. Specifically, for NDCG@5 and
HR@5, our method achieved a 40.65% and 36.42% improvement
on the books dataset, an 11.17% and 11.47% improvement on the
music dataset, and a 22.17% and 19.14% improvement on the movies
dataset. This is because KP4SR not only converts the recommenda-
tion task into a pre-training task but also efficiently utilizes domain
knowledge.

Table 3: Pre-training fine-tuning vs Prompt-tuning

method NDCG@5 NDCG@10 HR@5 HR@10 epoch

P5 0.0433 0.0501 0.0604  0.0813 300

books MPP 0.0505 0.0570 0.0658  0.0861 90

Improvement 16.63% 13.77% 8.94% 5.90% -70%

P5 0.0815 0.0879 0.0994  0.1193 300

music MPP 0.0839 0.0904 0.1018  0.1220 140
Improvement 2.94% 2.84% 2.41% 2.26%  -53.33%

P5 0.0618 0.0738 0.0888  0.1261 260

movies MPP 0.0645 0.0765 0.0906  0.1282 150
Improvement 4.37% 3.66% 2.03% 1.67%  -42.31%

5.3 Pre-training fine-tuning vs Prompt-tuning
(RQ2)

P5 uses a collection of personalized prompt templates to transform
recommendation tasks into question-answering tasks. This differs
from pre-training tasks and essentially belongs to the pre-training
fine-tuning paradigm. We design the MPP, which can transform a
recommendation task into a pre-training task, specifically a cloze
task, as shown in Table 3. It can be observed that MPP achieves
better performance on all three datasets and converges faster, re-
ducing the number of training epochs by 70%, 53.33%, and 42.31%,
respectively. Therefore, compared to first pre-training and then fine-
tuning, transforming recommendation tasks into NLP tasks and
then using prompt-tuning for recommendation is more competitive.

5.4 The impact of KP and PD (RQ3)

Next, we conduct experiments to investigate the impact of KP and
PD on three datasets. The results are reported in Table 4. From the
table, we can observe:

Firstly, without PD, the model performance gradually improves
with the increase of knowledge prompt hops on books and music
datasets. On the movies dataset, the best performance is achieved
with 1-hop knowledge prompts, and too much knowledge can neg-
atively affect performance. This suggests that PLMs can leverage
knowledge prompts to help capture user preferences and improve
recommendation performance, but the impact may vary across
different datasets.
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Table 4: Results when using different settings of KP and PD.
n represents the number of KP hops.

setting books music movies
KP PD | NDCG@5 HR@5 | NDCG@5 HR@5 | NDCG@5 HR@5
0.0505 0.0658 0.0839 0.1018 0.0645 0.0906
0.0503 0.0697 0.0881 0.1077 0.0671 0.0944
0.0522 0.0722 0.0885 0.1080 0.0650 0.0923
0.0543 0.0753 0.0891 0.1093 0.0623 0.0892
0.0542 0.0734 0.0894 0.1091 0.0729 0.1012
0.0575 0.0787 0.0886 0.1086 0.0677 0.0959
0.0523 0.0737 0.0899 0.1102 0.0702 0.0980

T e =
NN N % % % |

Table 5: Performance with different degrees of knowledge
tree. "For the books dataset, the degrees are 2, 4, 6, and 8.

degrees books music movies
NDCG@5 HR@5 | NDCG@5 HR@5 | NDCG@5 HR@5
2" 0.0575 0.0787 0.0890 0.1097 0.0729 0.1012
3* 0.0588 0.0807 0.0889 0.1097 0.0738 0.1032
4* 0.0608 0.0813 0.0906 0.1108 0.0755 0.1058
5* 0.0609 0.0824 0.0899 0.1102 0.0712 0.1005

Secondly, when the KP hops are the same, PD generally improves
performance, indicating that the proposed PD can effectively mit-
igate knowledge noise. However, PD is not always effective as it
may ignore potential relationships between triple prompts.

5.5 Impact of the degree of knowledge tree
(RQ3)

We investigate the influence of the degree of the knowledge tree (i.e.,
the number of tail entities connected to the head entity) on recom-
mendation performance. The results are shown in Table 5. On the
books dataset, the performance improves as the degree increases,
while on the music and movies datasets, the performance decreases
after a certain degree. This phenomenon is consistent with the
analysis in Section 5.4, which suggests that a certain amount of
knowledge can improve performance, but excessive noise knowl-
edge may lower performance.

5.6 Maximum sequence length

Due to the input length limitation, the maximum length of the user-
item interaction sequence in the previous studies was set to 5. In this
section, we investigate the effect of maximum interaction sequence
length on recommendation performance, as shown in Figure 5.
On the music dataset, the performance decreases as the maximum
sequence length increases. On the books and movies datasets, the
maximum sequence length has little impact on performance. This
indicates that users’ behavior is more dependent on their recent
interactions with items, and a larger maximum sequence length
may not necessarily lead to better performance, as it may introduce
additional noise.

5.7 Generalization of KP4SR (RQ4)

We manually design 11 MPP templates for each dataset, with the
first ten used for training, the first one used as the default testing
template, and the eleventh used to test the model’s generalization
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Figure 5: Performance with different maximum sequence
length.
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Figure 6: Performance with different prompt templates.

to unknown templates. We evaluate the performance of three tem-
plates, and the results are shown in Figure 6. Comparing templates
1 and 2, we can see that there are performance differences across
different templates, indicating that better-designed templates can
lead to better performance. At the same time, the model’s perfor-
mance only slightly decreases on unknown templates, indicating
that KP4SR has a good generalization ability to unknown templates.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose KP4SR, which is the first work that trans-
forms KG into knowledge prompts to improve SR. Firstly, we design
a set of MPP templates to transform the SR task into an NLP task,
significantly improving the recommendation performance and con-
vergence speed. Secondly, we construct a set of relation templates
to transform the KG into KP. It not only addresses the problems of
semantic differences but also enables the easy utilization of high-
order information in the KG. Next, we propose PD to alleviate noise
issues. The PD restores the data structure in the form of a mask
matrix, which eliminates the impact of irrelevant triples. Finally,
extensive experiments demonstrate the effectiveness of our method.
In future work, we will continue to explore how to use large lan-
guage models to achieve better recommendation performance.
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Knowledge Prompt-tuning for Sequential Recommendation

A LENGTH OF INPUT TOKENS

We statistic the input tokens length of three datasets under different
conditions, as shown in Figure 7. Each data point represents the
median length of all samples rather than the mean. For KP4SR, the
default maximum input length is 512. Therefore, in Section 5.3, we
set the degree to 2 for the books and movies datasets, and set the
degree to 5 for the music dataset. In Section 5.6, we set the hop
to 2 and the degree to 6 for the books dataset, and set the hop to
1 and the degree to 2 for the music and movies datasets. Figure
7(d) shows the length of input samples under different maximum
sequence lengths.
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Figure 7: Length of input tokens
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