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Abstract

In shilling attacks, an adversarial party injects a few fake user
profiles into a Recommender System (RS) so that the target
item can be promoted or demoted. Although much effort has
been devoted to developing shilling attack methods, we find
that existing approaches are still far from practical. In this
paper, we analyze the properties a practical shilling attack
method should have and propose a new concept of Cross-
system Attack. With the idea of Cross-system Attack, we
design a Practical Cross-system Shilling Attack (PC-Attack)
framework that requires little information about the victim
RS model and the target RS data for conducting attacks. PC-
Attack is trained to capture graph topology knowledge from
public RS data in a self-supervised manner. Then, it is fine-
tuned on a small portion of target data that is easy to ac-
cess to construct fake profiles. Extensive experiments have
demonstrated the superiority of PC-Attack over state-of-the-
art baselines. Our implementation of PC-Attack is available
at https://github.com/KDEGroup/PC-Attack.

1 Introduction
Recommender System (RS) has become an essential tool in
various online services. However, its prevalence also attracts
attackers who try to manipulate RS to mislead users for gain-
ing illegal profits. Among various attacks, Shilling Attack
is the most subsistent and profitable one (Lin et al. 2022).
RS allows users to interact with the system through vari-
ous operations such as giving ratings or browsing the page
of an item. In shilling attacks, an adversarial party injects
a few fake user profiles into the system to hoax RS so that
the target item can be promoted or demoted (Gunes et al.
2014). This way, the attacker can increase the possibility that
the target item can be viewed/bought by people or impair
the competitors by demoting their products. In experiments,
shilling attacks are able to spoof real-world RS, including
Amazon, YouTube and Yelp (Xing et al. 2013; Yang, Gong,
and Cai 2017). In practice, services of various large compa-
nies were affected by shilling attacks (Lam and Riedl 2004).
Studying how to spoof RS has become a hot direction (Deld-
joo, Noia, and Merra 2021) as it gives insights into the de-
fense against malicious attacks.
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Although much effort has been devoted to developing new
shilling attack methods (Gunes et al. 2014; Deldjoo, Noia,
and Merra 2021), we find existing shilling attack approaches
are still far from practical1. The main reason is that most of
them require the complete knowledge of the RS data, which
is not available in real shilling attacks. A few works study at-
tacking using incomplete data (Zhang et al. 2021a) or trans-
ferring knowledge from other sources to attack the victim
RS (Fan et al. 2021). Nevertheless, they still request a large
portion of the target data or assume other data sources share
some items with the victim RS.

In this paper, we study the problem of designing a practi-
cal shilling attack approach. We believe a practical shilling
attack method should have the following nice properties:
• Property 1: Do not require any prior knowledge of the

victim RS (e.g., model architecture or parameters in the
model).

• Property 2: When training the attacker, other data
sources (e.g., public RS datasets) instead of the data of
the victim RS can be used. Do not assume the training
data contain any users or items that exist in the victim
RS.

• Property 3: The attacker should use as little information
of the data in the victim RS as possible. Required infor-
mation should be easy to access in practice.

Our idea is that limiting the access to the target RS data
does not mean that the attacker cannot leverage a large vol-
ume of other public RS data to train the attack model. We
propose a new concept of Cross-system Attack: Thanks to
the prosperous development of RS research, many real RS
datasets are available and can be used for extracting knowl-
edge and training the attacker to launch shilling attacks.
Along this direction, we design a Practical Cross-system
Shilling Attack (PC-Attack) framework that requires little
information on the victim RS model and the target RS data.
The contributions of this work are summarized as follows:
1. We analyze the inadequacy of existing shilling attack

methods and propose the concept of cross-system attack
for designing a practical shilling attack model.

2. We design PC-Attack for shilling attacks. PC-Attack is
trained to capture graph topology knowledge from pub-

1The detailed analysis is provided in Sec. 2.2.



Category Method Knowledge Do not train with
a surrogate RS

Do not require
multiple queries

Cross-domain
attack

Cross-system
attackTarget

Data
RS

Architecture
RS

Parameters

Optimization PGA and SGLD m · n ✓ ✓ ✓ ✓ × ×
RevAdv and RAPU m · n × × × ✓ × ×

GAN
TrialAttack m · n ✓ × × ✓ × ×

Leg-UP m · n × × × ✓ × ×
DCGAN, AUSH

and RecUP m · n × × ✓ ✓ × ×

RL
PoisonRec e · n · k × × ✓ × × ×

LOKI m · n × × × ✓ × ×
CopyAttack e · n · k × × ✓ × ✓ ×

KD Model Extraction Attack c · k ✓ × ✓ × × ×
PC-Attack p ·m · n × × ✓ ✓ ✓ ✓

Table 1: Comparisons of shilling attack approaches. Reference of each method can be found in Sec. 2.1. m and n indicate the
numbers of users and items, respectively. p is the maximum percentage of the target data that PC-Attack requires. e, k and c
represent the number of training epochs, the length of recommendation list and the number of queries, respectively.

lic RS data in a self-supervised manner. Then, it is fine-
tuned on a small portion of target data that is readily
available to construct fake profiles. PC-Attack has all the
three nice properties discussed above.

3. We conduct extensive experiments to demonstrate that
PC-Attack exceeds state-of-the-art methods w.r.t. attack
power and attack invisibility. Even in an unfair compari-
son where other attack methods can access the complete
target data, PC-Attack with limited access to the target
data still exhibits superior performance.

2 Background
Shilling attacks can achieve both push attacks (promote the
target item) and nuke attacks (demote the target item). Since
attackers can easily reverse the goal setting to conduct each
attack (Lin et al. 2022), we consider push attacks in the se-
quel for simplicity. In this paper, the source data and the
target data refer to the RS data used for training the attack
model and the data in the victim RS, respectively.

2.1 Related Work
Early works of shilling attacks rely on heuristics (Gunes
et al. 2014). Recent works (Deldjoo, Noia, and Merra 2021)
mostly adopt the idea of adversarial attack (Yuan et al.
2019), and they can be categorized into four groups.

Optimization methods study how to model shilling at-
tacks as an optimization task and then use optimization
strategies to solve it. Li et al. (2016) assumes the victim RS
adopts matrix factorization (MF) and they propose methods
PGA and SGLD that directly add the attack goal into the ob-
jective of MF. RevAdv proposed by Tang, Wen, and Wang
(2020) and RAPU proposed by Zhang et al. (2021a) model
shilling attacks as a bi-level optimization problem.

GAN-based methods adopt Generative Adversarial Net-
work (GAN) (Goodfellow et al. 2014) to construct fake user
profiles. The generator models the data distribution of real
users and generates real-like data, while the discriminator is
responsible for identifying the generated fake users. Along
this direction, a large number of methods have sprung up:
TrialAttack (Wu et al. 2021), Leg-UP (Lin et al. 2022),

DCGAN (Christakopoulou and Banerjee 2019), AUSH (Lin
et al. 2020), RecUP (Zhang et al. 2021b), to name a few.

RL-based methods query the RS to get feedback on
the attack. Then, Reinforcement Learning (RL) (Kaelbling,
Littman, and Moore 1996) is used to adjust the attack. Rep-
resentative works include PoisonRec (Song et al. 2020),
LOKI (Zhang et al. 2020) and CopyAttack (Fan et al. 2021).

KD-based methods leverage Knowledge Distillation
(KD) (Gou et al. 2021) to narrow the gap between the sur-
rogate RS and the victim RS. The surrogate RS is used to
mimic the victim RS when the prior knowledge is not avail-
able. Model Extraction Attack proposed by Yue et al. (2021)
falls in this category.

2.2 Analysis of Existing Works
We review existing shilling attack approaches and summa-
rize their characteristics in Tab. 1:

• Data Knowledge: Some methods assume the complete/-
partial target data is exposed to attackers. A practical at-
tack method should use as less target data as possible.

• RS Parameter Knowledge: Some methods require the
knowledge of the learned parameters of the victim RS.
Such information is typically not available.

• RS Architecture Knowledge: Some methods require the
knowledge of the architecture of the victim RS. Such in-
formation is typically not available.

• Train with a surrogate RS: Use a surrogate RS to train
the attacker to avoid the prior knowledge of the victim
RS.

• Require multiple queries: Query the victim RS multiple
times and adjust fake profiles according to the feedback.

• Cross-domain Attack: Use the information in one RS
domain to attack another RS domain, e.g., train on the
book data in Amazon RS and then attack video items
in Amazon RS. Source and target domains share users
and/or items.

• Cross-system Attack: Use the information in one RS to
attack another RS, e.g., train on the Yelp RS and then
attack Amazon RS. Source RS and target RS may not
share users and/or items.
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Figure 1: Overview of PC-Attack.

From Tab. 1, we can see that none of the existing meth-
ods have all the three properties illustrated in Sec. 1. In
other words, there is still no real practical shilling attack
method. Particularly, we do not find any method that has
Property 2 and can achieve cross-system attack. Property 2
partially manifests in CopyAttack. But CopyAttack assumes
the source data and the target data share items and it is only
able to achieve cross-domain attack. Model Extraction At-
tack considers a data-free setting and uses limited queries (c
queries) to close the gap between the surrogate RS and the
victim RS. But its idea only works on sequential RS and the
number of required queries is hard to pre-defined.

In summary, based on Tab. 1, we can conclude that our
method PC-Attack (illustrated in the next section) has all of
the three properties that a practical shilling attack method
should have. And it is able to achieve cross-system attack, a
difficult but practical setting of real shilling attacks.

3 Our Framework PC-Attack
3.1 Motivation and Overview of PC-Attack
Existing works on cross-domain and cross-system recom-
mendations (Zhao et al. 2013; Zhu et al. 2018) have veri-
fied that the knowledge learned from a source domain/sys-
tem can help improve recommendation results in a target
domain/system, i.e., the RS knowledge is transferable. This
has inspired us in designing PC-Attack. We believe it is pos-
sible to have an attack model that captures RS knowledge
from the source data and can be transferred to attack the vic-
tim RS. Fig. 1 provides an overview of PC-Attack:

1. Firstly, we construct a bipartite user-item graph on the
source data where each user-item edge indicates the ex-
istence of the corresponding user-item interaction.

2. After that, PC-Attack trains a graph structure encoder
(GS-Encoder) to capture the structural patterns of the
source data in a self-supervised manner.

3. Then, PC-Attack feeds a small portion of the public
target data (e.g., a popular item and some people who
bought it) into GS-Encoder and fine-tunes to get simu-
lated representations after a successful attack.

4. Finally, based on the simulated representations, PC-
Attack searches for possible co-visit items of the target

item that affect the possibility of recommending the tar-
get item and fills them in fake user profiles. Fake user
profiles are injected into the victim RS to start the attack.

PC-Attack does not assume that the entity-
correspondences across different domains/systems exist
(i.e., a user or an item exists in both source and target
data) even if they indeed exist. This way, PC-Attack does
not require additional prior knowledge. Therefore, in step
2, PC-Attack is designed to only capture the structural
patterns of the source data without knowing real identities
of each node. To endow PC-Attack with the attack power,
when constructing fake user profiles in step 4, we adopt
the idea that items that can affect whether the target item is
recommended are likely to have been interacted by some
users together with the target item. This idea is called as
co-visitation attack and has been verified in existing shilling
attack methods (Yang, Gong, and Cai 2017). Compared to
existing methods, PC-Attack requires much less informa-
tion. It only needs a subgraph of a popular item, numbers of
users/items in the target data and users who interacted with
the target item before.

3.2 Learn from Graph Topology in the Source
Without the knowledge of explicit entity-correspondences
between the source data and the target data, we can not di-
rectly leverage historical records in the source data to encode
users and items into representations that can be later used in
attacking the target data. Nevertheless, previous studies have
shown that topologies of user-item bipartite graphs from dif-
ferent RS data share some common properties (Huang and
Zeng 2011). We can construct a user-item bipartite graph
from the source data and train a graph structure encoder
(GS-Encoder) to capture graph topological properties that
are shared among different RS domains/systems.

Graph Neural Network (GNN) is the prevalent neural
network used for modeling graph data. We use GNN as
the backbone of GS-Encoder to capture the intrinsic and
transferable properties from interaction data in the bipartite
graph. However, most feedback provided by users is implicit
(e.g., clicks and views) rather than explicit (e.g., ratings).
Hence, the observed interactions often contain noise that
may not indicate real user preferences. Neighborhood ag-
gregation schemes in GNN may amplify the influence of in-
teractions on representation learning, making learning more



susceptible to interaction noise.
To alleviate the negative effect of noise, we introduce

contrastive learning, a type of self-supervised learning
(SSL) (Liu et al. 2021), into GS-Encoder. SSL constructs su-
pervision signals from the correlation within the input data,
avoiding requiring implicit labels. Through contrasting sam-
ples, GS-Encoder learns to move similar sample pairs to
stay close to each other while dissimilar ones are far apart.
We adopt the idea of multi-view learning (Xu, Tao, and Xu
2013) when designing the self-supervised contrastive learn-
ing task. We model the node neighborhood as both a sub-
graph and a sequence, which helps GS-Encoder better cap-
ture the topological properties.

Multi-view Data Augmentation To model node neigh-
borhoods, we first sample paths by random walks and ex-
pand a single node j in the user-item bipartite graph into its
local structure as the subgraph view gj . We use the random
walk with a restart process (Tong, Faloutsos, and Pan 2006):
(1) a random walk starts from a node j in the bipartite graph,
and (2) it randomly transmits to a neighbor with a probabil-
ity α or returns to j with a probability 1 − α in each step.
Note that we re-construct subgraph views in each training
epoch.

For each node, its 1-hop neighbors describe user-item in-
teraction patterns. The 2-hop neighbors exhibit co-visitation
patterns (i.e., users who have interacted with the same item
or items which have been interacted by the same user),
which are important in shilling attacks (Yang, Gong, and Cai
2017). We propose to construct the sequence view to capture
the above two types of patterns better. With the node j as
the center, we sort by the ID of its 1-hop nodes and its 2-hop
nodes in turn to construct the sequence view sj of j. The dif-
ference between the sequence view and the subgraph view is
that the sequence view directly separates two data patterns
while the subgraph view mixes two patterns up. Using the
sequence view emphasizes learning two patterns individu-
ally while using the subgraph view learns them as a whole.

Multi-View Contrastive Learning Contrastive learning
aims to maximize the similarity between positive samples
while minimizing the similarity between negative samples.
A suitable contrast task will facilitate capturing topologi-
cal properties from the source data. Unlike most contrastive
learning methods that only focus on contrasting positive and
negative samples in one view, we deploy a multi-view con-
trast mechanism when designing GS-Encoder so that GS-
Encoder can benefit from more supervision signals.

The subgraph view of each node is passed to a GNN en-
coder in GS-Encoder. We adopt GIN (Xu et al. 2019) as
the GNN encoder, though other GNNs can be adopted. The
GNN encoder updates node representations as follows:

h(b)
v = MLP(b)

(
(1 + ϵ(b)) · h(b−1)

v +Σu∈N (v)h
(b−1)
u

)
,
(1)

where h
(b)
v is the representation of node v at the b-th GNN

layer, N (v) is the set of 1-hop nodes to v and MLP(·) indi-
cates multi-layer perceptron. We use eigenvectors of the nor-
malized graph Laplacian of the subgraph to initialize h(0) of
each node in the subgraph (Qiu et al. 2020). For a node j, its

representation hg
j , from the subgraph view, is the concatena-

tion of the aggregation of its neighborhood’s representations
generated in all GNN layers:

hg
j = Concat

(
Readout({h(b)

v |v ∈ Vj}) | b = 0, 1, ..., b̂
)
,
(2)

where Concat(·) denotes the concatenate operation, the
Readout(·) function aggregates representations of nodes in
the subgraph of j from each iteration, and b̂ is the number of
GIN layers.

The sequence view of each node j is passed to a LSTM
and we use the last hidden state hs

j as the representation from
the sequence view.

hg and hs are further fed to a fully connected feedforward
neural network to map them to the same latent space:

ĥg
j = W2 · σ(W1h

g
j + b1) + b2,

ĥs
j = W2 · σ(W1h

s
j + b1) + b2,

(3)

where W1,W2, b1, b2 are learnable weights, and σ(·) indi-
cates the sigmoid function.

In contrastive learning, we need to define positive and
negative samples. For each node j, we define its positive
sample posj and negative samples negj as the subgraph
obtained by random walks starting from j and its corre-
sponding sequence view, and the subgraphs obtained by ran-
dom walks starting from other nodes and their correspond-
ing sequence views, respectively. Note that, to improve ef-
ficiency and avoid processing too many negative subgraph-
s/sequences, we use subgraph/sequence views of other nodes
in the same batch as negative samples.

The contrastive loss under the subgraph view is:

Lg
j = −log

exp
(
sim(ĥg

j , ĥ
s
posj

)/τ
)

Σl∈negj
exp

(
sim(ĥg

j , ĥ
s
l )/τ

) , (4)

where sim(·) denotes the cosine similarity and τ denotes a
temperature parameter. The contrastive loss under the se-
quence view is defined similarly:

Ls
j = −log

exp
(
sim(ĥs

j , ĥ
g
posj

)/τ
)

Σl∈negj
exp

(
sim(ĥs

j , ĥ
g
l )/τ

) . (5)

The overall multi-view contrastive objective of GS-
Encoder is as follows:

Lssl =
1

n
Σj∈I(λg · Lg

j + λs · Ls
j), (6)

where λg and λs are hyper-parameters to balance two views,
I is the item set, and n is the number of items.

3.3 Craft Fake User Profiles in the Victim RS
After pre-training the GS-Encoder, the next step is to con-
struct a few fake user profiles and inject them into the victim
RS to pollute the target data. Our construction method of
fake users is based on three design principles from the liter-
ature:
• Principle 1: Item-based RS is designed to recommend

items similar to past items in the target user’s profile (Sar-
war et al. 2001).



• Principle 2: User-based RS is designed to recommend
items interacted by similar users of the target user (Her-
locker, Konstan, and Riedl 2000).

• Principle 3: According to the idea of co-visitation at-
tack (Yang, Gong, and Cai 2017), the co-visit items of the
target item (i.e., the 2-hop neighbors of the target item in
the bipartite graph) can affect whether the target item can
be recommended.

Based on the above principles, the goals of our construc-
tion method are:

• Goal 1: Based on Principle 1, our goal is to affect the vic-
tim RS so that the representation of target item is as sim-
ilar as possible to representations of the rest of the items.
This way, the possibility of recommending the target item
can increase. We hope that our attack can achieve the fol-
lowing objective: for any item i, sim(hitem

i ,hitem
t ) >

sim(hitem
i ,hitem

j ), where t is the target item, j denotes
any other item, and sim(·) denotes a measure of similar-
ity between items (e.g., cosine similarity), and hitem

i is
the representation of item i in the victim RS.

• Goal 2: Based on Principle 2, our goal is to affect the
victim RS so that representations of users who have in-
teracted with the target item are as similar as possi-
ble to representations of other users. This way, the pos-
sibility of recommending the target item can increase.
We hope that, for any user u, sim(huser

u ,huser
r ) >

sim(huser
u ,huser

e ), where r ∈ N (t) denotes the user
who has interacted with the target item t, e /∈ N (t) is
any other user, and huser

u is the representation of user u
in the victim RS.

• Goal 3: Based on Principle 3, our goal is to find possible
co-visit items of the target item after a successful attack
and fill them in the fake user profiles.

However, the above goals are challenging without know-
ing the details of the victim RS and the target data, i.e., we
do not know hitem and huser in the victim RS. GS-Encoder,
which captures the transferable knowledge from the more
informative source data, can help us accomplish this task:

• Step 1: Use the pre-trained GS-Encoder to generate node
representations based on topological information of the
incomplete target data.

• Step 2: Fine-tune and get simulated representations after
the successful attack (Goal 1 and Goal 2).

• Step 3: Based on the simulated, after-attack representa-
tions, we search for possible co-visit items of the target
items and craft the fake user profiles (Goal 3).

Considering that we cannot access the complete target
data, we collect a very small portion of the target data that
can be publicly accessed. One example is the popular item
in the victim RS, some normal users who have bought them
and the 2-hop items to the popular item. Such information is
typically available. For instance, Amazon provides “Popular
Items This Season” and Newsegg provides “Popular Prod-
ucts” on their homepages, as shown in Fig. 2, and infor-
mation of their buyers can be found by clicking the pop-
ular item. The buyer’s homepage may provide information

Figure 2: Popular items of Amazon and Newegg.

of some items that he/she bought before. Therefore, starting
from one popular item, we collect users/items in its 2-hop
subgraph via random walks without restart. But we limit the
total number of nodes to be lower than p percentage of the
target data to keep a low level of knowledge. In addition to
the collected subgraph of a popular item, we collect a user
set M(t) containing users who have interacted with the tar-
get item t.

Based on the collected data from the target data, we con-
struct a small subgraph centering on the popular item, and
feed it into the pre-trained GS-Encoder to generate initial
representations of users/items in the subgraph:

hj = ηg · ĥg
j + ηs · ĥs

j , (7)

where ηg and ηs are hyper-parameters that balance the ef-
fects of the two views, hj is the fused representation of
node j, and ĥg

j and ĥs
j are subgraph-view representation

and sequence-view representation of node j generated by
the pre-trained GS-Encoder as shown in Eq. 3, respectively.

For most users and items in the target data that are not
collected, we assume that we know the numbers of users
(m) and items (n) in the victim RS, and initialize their rep-
resentations from a normal distribution N (0, 0.1). This is
a reasonable assumption as many RS websites reveal exact
numbers or the order of magnitude of users/items. Including
users and items that are not in the collected small subgraph
makes it possible to generate fake user profiles with items
not in the collected subgraph.

We continue to fine-tune over the above collected data
with the following objective for Goal 1 to simulate repre-
sentations after a successful attack:

Litem = −logΣn
i=1

sim(hitem
i ,hitem

t )

Σj ̸=tsim(hitem
i ,hitem

j )
. (8)

Similarly, for Goal 2, we fine-tune with the following ob-
jective to simulate representations after a successful attack:

Luser = −logΣm
u=1

Σg∈M(t)sim(huser
u ,huser

g )

Σj /∈M(t)sim(huser
u ,huser

j )
. (9)

The overall objective is as follows:

Lfine−tune = µitem · Litem + µuser · Luser, (10)

where µitem and µuser are hyper-parameters that balance
the effects of the two loss functions.

After fine-tuning, we have new representations of users
and items that simulate the representations in the victim RS



Dataset #Users #Items #Interactions Sparsity
FilmTrust 780 721 28,799 94.88%

Automotive 2,928 1,835 20,473 99.62%
T & HI 1,208 8,491 28,396 99.72%

Yelp 2,762 10,477 119,237 99.59%

Table 2: Statistics of datasets

after a successful attack. Then, we search for possible co-
visit items of the target item based on the simulated rep-
resentations. Similar to other shilling attack methods (Lin
et al. 2020, 2022), the fake user profile in PC-Attack con-
tains three parts: selected items, filler items and the target
item. We estimate the potential interest of all users in the
target item t after the attack by the inner product of repre-
sentations, and sample z users according to the probability:

Pro(u|t) = hitem
t · huser

u

Σm
j=1h

item
t · huser

j

. (11)

Common items existing in these z profiles are chosen as the
selected items. Because popular items are always more ac-
cessible than others and appear in many normal users’ pro-
files, we randomly sample y popular items from the col-
lected subgraph according to their degrees as filler items to
enhance the invisibility of PC-Attack. For each fake profile,
the above crafting process is conducted independently.

4 Experiments
4.1 Experimental Settings
Datasets We use four public datasets2 widely adopted in
previous works on shilling attacks (Lin et al. 2020, 2022), in-
cluding FilmTrust, Yelp and two other Amazon datasets Au-
tomotive, and Tools & Home Improvement (T & HI). Target
items for testing attacks are included in the datasets. Tab. 2
illustrates the statistics of the data. Default training/test split
is used for training and tuning surrogate RS models (if base-
lines require a surrogate RS) and victim RS models. By de-
fault, we train PC-Attack to learn graph topology from the
complete Yelp dataset since Yelp is the largest dataset. Then,
we test it on attacking victim RS on the other three datasets.
Since some experiments require long-tail items, we define
long-tail items as items with no more than three interactions.

Shilling Attack Baselines We use three classic attack
methods2 Random Attack, Bandwagon Attack and Segment
Attack (Lin et al. 2022), and four state-of-the-art shilling at-
tack methods RevAdv3 (Tang, Wen, and Wang 2020), Tri-
alAttack4 (Wu et al. 2021), Leg-UP2 (Lin et al. 2022) and
AUSH2 (Lin et al. 2020) as baselines.

Victim RS We conduct shilling attacks against various
prevalent RS models: NCF (He et al. 2017), WRMF (Hu,
Koren, and Volinsky 2008), LightGCN (He et al. 2020),
NGCF (Wang et al. 2019), VAE (Liang et al. 2018),
CDAE (Wu et al. 2016) and ItemAE (Sedhain et al. 2015).

2https://github.com/XMUDM/ShillingAttack
3https://github.com/graytowne/revisit_adv_rec
4https://github.com/Daftstone/TrialAttack

Hyper-parameters The hyper-parameters of attack base-
lines and victim RS are set as the original papers suggest
and tuned to show the best results. We set the number of
fake profiles to 50 for all methods. This is roughly the
population that can manifest the differences among attack
models (Burke et al. 2005). For PC-Attack, we set train-
ing epochs to 32, batch size to 32, embedding size to 64
and learning rate to 0.005. z and y used in crafting pro-
files are set to 50 and 10, respectively. The length of ran-
dom walk is set to 64 and the restart probability 1−α is 0.8.
The number of GIN layers b̂ is 5. Other hyper-parameters
of PC-Attack are selected through grid search and the cho-
sen hyper-parameters are: τ = 0.07, λg = 0.5, λs = 0.5,
ηg = 0.5, ηs = 0.5, µuser = 0.5, and µitem = 0.5. By
default, we set p = 10% when collecting target data. Adam
optimizer is adopted for optimization.

Evaluation Metrics Hit Ratio (HR@k) and Normalized
Discounted Cumulative Gain (NDCG@k) are used for eval-
uation. HR@k measures the average proportion of normal
users whose top-k recommendation lists contain the target
item after the attack. NDCG@k measures the ranking of the
target item after the attack. For both metrics, we set k to 50.

4.2 Overall Attack Performance
Tab. 3 summarizes the overall attack performance of differ-
ent attack methods. We have the following observations:

1. PC-Attack∗ and PC-Attack together achieve the best re-
sults in most cases, showing the effectiveness of our de-
signs. Some baselines may have better results in a few
cases, but their attack performance is not robust.

2. PC-Attack achieves best results in more than 30% cases.
In other cases where PC-Attack does not rank first, its
performance is not far away from the best performance.
Note that our goal (i.e., a practical attack) is to use as lit-
tle information of the target data as possible. In the case
of the unfair comparison, (i.e., baselines take the com-
plete target data and PC-Attack accesses at most 10%),
it is acceptable that PC-Attack can have degraded per-
formance in exchange for the feasibility of the attack.
However, PC-Attack shows promising results, showing
the power of cross-system attack.

4.3 Impacts of Accessible Target Data (p)
We evaluate the performance of PC-Attack when p changes
(the default value is p = 10% and PC-Attack∗ uses p =
100%). Fig. 3 illustrates the results on the FilmTrust dataset.
We can observe that, as p decreases, the attack performance
of PC-Attack degrades gradually. However, thanks to the
knowledge learned from the source data, the decline of at-
tack performance is not significant and PC-Attack is robust
when the percentage of accessible target data varies.

4.4 Impacts of Source Data
We conduct two experiments to check the impacts of source
data on PC-Attack:



Dataset Victim RS Attack Method (HR@50)
RevAdv TrialAttack Leg-UP AUSH Bandwagon Random Segment PC-Attack∗ PC-Attack

Automotive

CDAE 0.1643 0.2504 0.2237 0.1949 0.2114 0.2247 0.1949 0.1348 0.1693
ItemAE 0.2916 0.3128 0.3105 0.2926 0.3232 0.3183 0.2926 0.4908 0.3787

LightGCN 0.1002 0.1228 0.1149 0.1361 0.1462 0.1222 0.1361 0.1406 0.1716
NCF 0.7012 0.7744 0.7712 0.7359 0.7689 0.7462 0.7359 0.8574 0.6484

NGCF 0.0866 0.0960 0.1398 0.1416 0.1362 0.1387 0.1416 0.0864 0.1056
VAE 0.0842 0.0841 0.1168 0.1196 0.0960 0.0965 0.1196 0.1238 0.1559

WRMF 0.9243 0.2941 0.3561 0.4386 0.3769 0.3069 0.4386 0.9268 0.9213

FilmTrust

CDAE 0.4587 0.6270 0.6190 0.5342 0.4837 0.5954 0.5342 0.7505 0.7810
ItemAE 0.6429 0.4721 0.5965 0.5501 0.5253 0.4807 0.5501 0.9534 0.9544

LightGCN 0.8522 0.8362 0.8820 0.8594 0.8271 0.8169 0.8594 0.8949 0.8517
NCF 0.9319 0.9108 0.9521 0.8846 0.8855 0.8929 0.8846 0.9266 0.9543

NGCF 0.9015 0.9123 0.9207 0.9072 0.9079 0.9091 0.9072 0.9037 0.9101
VAE 0.9713 0.9742 0.9749 0.9724 0.9721 0.9726 0.9724 0.9689 0.9730

WRMF 0.5143 0.4171 0.4732 0.4976 0.4873 0.4667 0.4976 0.5706 0.4935

T & HI

CDAE 0.1126 0.3186 0.3929 0.3409 0.3173 0.4156 0.3409 0.3449 0.2279
ItemAE 0.1074 0.2755 0.2677 0.1433 0.1857 0.2335 0.1433 0.3324 0.1487

LightGCN 0.0028 0.0376 0.0383 0.0531 0.1603 0.0273 0.0531 0.0456 0.2064
NCF 0.5421 0.6895 0.8508 0.8038 0.9017 0.8827 0.8038 0.7749 0.1988

NGCF 0.0177 0.0739 0.1018 0.0903 0.1016 0.0927 0.0903 0.1064 0.0705
VAE 0.3530 0.9975 0.9993 0.9995 0.9991 0.9996 0.9995 0.9916 0.9669

WRMF 0.0406 0.0697 0.0495 0.0448 0.0530 0.0460 0.0448 0.0868 0.0743

Table 3: Attack performance (HR@50) of different attack methods against different victim RS models. PC-Attack∗ indicates
that the complete target data is used. Best results are shown in bold.

Figure 3: Impacts of Accessible Target Data (p).

Victim
RS

Source Data
Automotive T & HI Yelp

HR@50 NDCG@50 HR@50 NDCG@50 HR@50 NDCG@50
CDAE 0.773 0.198 0.793 0.199 0.781 0.200
ItemAE 0.953 0.257 0.949 0.255 0.954 0.257

LightGCN 0.817 0.219 0.823 0.221 0.852 0.236
NCF 0.907 0.247 0.927 0.254 0.954 0.256

NGCF 0.895 0.243 0.909 0.242 0.910 0.247
VAE 0.971 0.259 0.970 0.258 0.973 0.259

WRMF 0.508 0.139 0.475 0.131 0.494 0.136

Table 4: Results of using different source datasets (the target dataset is
FilmTrust). Best results are shown in bold.

Impacts of Using Different Source Data Tab. 4 reports
the results of PC-Attack when using FilmTrust as the target
data and the other three datasets are used as the source data.
We can observe that using different source dataset does not
affect the performance too much, which confirms that differ-
ent RS data have common topological information of which
the knowledge is transferable. However, the larger the source
data is, the better PC-Attack can capture the structural pat-
terns. Hence, PC-Attack shows best results when using Yelp
(the largest dataset in our experiments) as the source data.

Performance of Using Multiple Source Datasets PC-
Attack can learn graph topology from multiple source
datasets to benefit from the large volume of public RS data.
To illustrate the results of using multiple source dataset, we
train PC-Attack on different source datasets in the order of
dataset size and then use it to attack WRMF, NGCF and
LightGCN on the FilmTrust dataset. As shown in Fig. 4,
as more source datasets are used, the performance of PC-
Attack gradually gets improved, showing that we can feed
more public RS datasets to PC-Attack and get even better
attack performance.

4.5 Attack Invisibility
Next, we investigate the invisibility of PC-Attack.

Attach Detection We apply the state-of-the-art unsuper-
vised attack detector (Zhang et al. 2015) on the fake pro-
files generated by different attack methods. Tab. 5 describes
the accuracy and recall of the detector on different attack
methods. Lower precision and recall indicate that the at-
tack method is less perceptible. Based on the results, we
find that the detection performance is highly data-dependent,
and fake users are more easy to detect on denser datasets.
For example, it is difficult for the detector to find fake
users on Yelp. But it has relatively high precision and re-
call for detecting most attack methods (except PC-Attack)
on FilmTrust. PC-Attack generates almost undetectable fake
users. In most cases, the detector performs the worst on PC-
Attack. On T & HI, the detector does not has the lowest pre-
cision and recall for PC-Attack, but the values are close to
lowest ones.

Fake User Distribution Using t-SNE (Van der Maaten
and Hinton 2008), Fig. 5 visualizes users’ representations
generated by WRMF after it is attacked by PC-Attack on



Figure 4: Learn graph topology from multiple source
datasets and then attack victim RS on FilmTrust.

Victim
RS

Target Data
FilmTrust Automotive T & HI

Precison Recall Precison Recall Precison Recall
RevAdv 0.0713 0.0778 0.0080 0.0089 0.0180 0.0200

TrialAttack 0.1603 0.1927 0.1114 0.1038 0.0200 0.0256
Leg-UP 0.2497 0.2711 0.0000 0.0000 0.0400 0.0444
AUSH 0.2429 0.2556 0.0380 0.0422 0.0742 0.0822

Bandwagon 0.2371 0.2489 0.0220 0.0244 0.0762 0.0845
Random 0.2340 0.2467 0.0220 0.0244 0.0441 0.0489
Segment 0.2602 0.2733 0.0280 0.0311 0.0662 0.0733

PC-Attack 0.0280 0.0311 0.0000 0.0000 0.0240 0.0266

Table 5: Detection performance on different attack methods. Best re-
sults are shown in bold.

(a) Automotive (b) FilmTrust

Figure 5: Visualization of user profiles. Red nodes are fake
profiles and blue nodes are real profiles.

                                           

Figure 6: Impact of the starting item.

Automotive and FilmTrust. We can observe that fake users
profiles are scattered among real user profiles and it is hard
for detectors to distinguish fake and real users, showing that
PC-Attack can launch virtually invisible attacks.

4.6 Impacts of the Starting Node in Target Data
By default, we start with the most popular item to collect
the target data and select no more than 10% of user-item in-
teraction records within the limit of only 2-hop neighbors.
To evaluate the robustness of PC-Attack, we compare the
default setting with two other options: use an item sampled
from long-tail items as the starting point and use a random
sampled item as the starting point. Fig. 6 compares the re-
sults of the default setting and two extra settings for attack-
ing WRMF on FilmTrust. We can see that the attack per-
formance of starting with a randomly sampled item does
not lag much behind starting with the most popular item,
and is also robust w.r.t. different settings of total numbers of
nodes in the collected target data. Differently, starting from a

Victim
RS

T & HI → Automotive Automotive → T & HI
HR@50 NDCG@50 HR@50 NDCG@50

CDAE 0.035 0.008 0.222 0.068
ItemAE 0.288 0.096 0.142 0.080

LightGCN 0.160 0.051 0.238 0.113
NCF 0.366 0.084 0.079 0.036

NGCF 0.039 0.009 0.061 0.018
VAE 0.047 0.011 0.975 0.565

WRMF 0.902 0.288 0.073 0.027

Table 6: Results of PC-Attack for the cross-domain attack.

sampled long-tail item results in a much worse performance.
The reason is the long-tail item does not have many 2-hop
neighbors and the collected data cannot help fine-tune GS-
Encoder well on the target data. The performance of start-
ing from a long-tail item is very consistent when the limit
of node numbers changes. The reason is that long tail items
have few neighbors and the number of the 2-hop neighbors
of long tail items do not exceed 10% of the total target data.
Changing the limit does not actually change the number of
the collected nodes. In summary, starting with a popular item
brings the best results. Considering that popular items are
always more readily available, PC-Attack uses the popular
item as the default starting point to collect target data.

4.7 Performance of Cross-domain Attack.

PC-Attack is designed for both cross-system attack and
cross-domain attack. Experimental results in previous sec-
tions are for cross-system attack. Next, we further report the
performance of cross-domain attack using PC-Attack. Tab. 6
provides the result of PC-Attack for using T & HI as the
source and Automotive as the target, and using Automotive
as the source and T & HI as the target. The two datasets con-
tain data in different categories of Amazon. From the result,
we can observe that PC-Attack achieves acceptable attack
performance for cross-domain attack, but the performance is
worse than cross-system attack reported in Tab. 3. The rea-
son is that the source dataset Yelp used in our default exper-
iments for cross-system attack is much larger than T & HI
and Automotive used in the experiments for cross-domain
attack. PC-Attack can better capture topological information
from a larger source dataset. Hence, it shows better results
in cross-system attack than cross-domain attack.



ηg : ηs HR@50 NDCG@50 λg : λs HR@50 NDCG@50 µitem : µuser HR@50 NDCG@50
1:0 0.467 0.131 1:0 0.471 0.132 1:0 0.474 0.131
0:1 0.471 0.132 0:1 0.478 0.134 0:1 0.477 0.114
2:1 0.499 0.134 2:1 0.515 0.147 2:1 0.481 0.136
1:2 0.486 0.136 1:2 0.512 0.144 1:2 0.501 0.142
1:1 0.522 0.146 1:1 0.522 0.146 1:1 0.522 0.146

Table 7: Results using different hyper-parameters.

4.8 Impacts of Hyper-parameters and Ablation
Study

The three sets of balance hyper-parameters η, λ and µ are
used to balance the effects of representations from graph and
sequence views, graph-view and sequence-view loss func-
tions, and user and item loss functions, respectively.

Tab. 7 reports the performance of PC-Attack when attack-
ing WRMF using different balance hyper-parameters. We
can observe that the change of balance hyper-parameters af-
fect the performance of PC-Attack. When setting equal val-
ues to all balance hyper-parameters, the attack performance
is the best.

Besides, the first two rows and the last row in Tab. 7 can
be viewed as three ablation experiments: (1) only use graph-
view representation, graph-view loss and item loss, (2) only
use sequence-view representation, sequence-view loss and
sequence loss, and (3) the default PC-Attack that uses all
parts. From Tab. 7, we can see that PC-Attack performs best
when all parts are present and removing any of them will
degrade the attack performance. Therefore, we can conclude
that each component in PC-Attack indeed contributes to its
overall attack performance.

5 Conclusion
In this paper, we study practical shilling attacks. We analyze
the limitations of existing works and design a new frame-
work PC-Attack that transfers the knowledge to attack the
victim RS on incomplete target dataset. Experimental results
demonstrate the superiority of PC-Attack. In the future, we
plan to introduce more self-supervised learning tasks so that
PC-Attack can get more supervision signals and better cap-
ture the transferable RS knowledge.
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