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ABSTRACT
Fault-tolerant group recommendation systems based on subspace
clustering successfully alleviate high-dimensionality and sparsity
problems. However, the cost of recommendation grows exponen-
tially with the size of dataset. To address this issue, we model the
fault-tolerant subspace clustering problem as a search problem on
graphs and present an algorithm, GraphRec, based on the concept
of α-β-core. Moreover, we propose two variants of our approach
that use indexes to improve query latency. Our experiments on
di�erent datasets demonstrate that our methods are extremely fast
compared to the state-of-the-art.
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1 INTRODUCTION
Recommender systems have become standard add-ons in popular
e-commerce applications and social media sites, such as Amazon,
Yelp, and TripAdvisor. In a rating-based recommender system, users
rate items by giving them scores. Given a target user uq , the goal
of individual recommendation is to estimate the unobserved scores
of items by uq and recommend to uq the items with the highest
predicted scores. Collaborative �ltering (CF), the most widely used
method for this problem [1], predicts unobserved scores based on
the ratings of the most similar users to uq . A more general problem
is group recommendation, where users form groups and items are
recommended to these groups. For example, Meetup1 helps users
to organize and participate in group activities and goodreads2 sets
up book-reading groups.

Clustering-based group recommendation [7–9] adopts full-
dimensional clustering to organize similar users into groups. Each
user is modeled by the vector of ratings given by her to all items
and cosine similarity or Pearson coe�cient is used as a similar-
ity measure. However, clustering is not e�ective when di�erent
dimensions are relevant for di�erent groups [10]. To address this
issue, fault-tolerant group recommendation, which adopts subspace
clustering algorithms [5] to group users, has been recently pro-
posed [4, 10]. Subspace clustering algorithms �nd groups of similar
1http://www.meetup.com
2http://www.goodreads.com
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users in dimensional subspaces (i.e., subsets of items [5]). Users in
each projected cluster are similar considering only some dimen-
sions, which is intuitive in real life. For example, two users may
have similar taste in comedies, but a di�erent one in Sci-Fi movies.
Hence, they may belong to same cluster considering some proper-
ties of comedies, but in di�erent clusters w.r.t. Sci-Fi properties.

Fault-tolerant group recommendation has shown its e�ective-
ness in previous studies [4, 10]. In this paper, we aim at improving
its scalability. We �rst show the relationship between fault-tolerant
group recommendation and graph search. Then, we present our
method, GraphRec, and its variants which are based on �nding
α-β-cores in the bipartite graph that connects users to items. We ex-
perimentally show that our methods perform fault-tolerant group
recommendation extremely fast, compared to the state-of-the-art.

2 GRAPHREC
Ntoutsi et al. [10] extend the concept of fault tolerance to subspace
clustering and propose a new algorithm (FTSC) for group recom-
mendation. FTSC allows each user (item) in one subspace cluster to
have OI (OU ) missing values, while the total missing values in one
subspace cluster are controlled by another parameterOE . This way,
FTSC introduces more �exibility to subspace clustering based group
recommendation. However, FTSC shows poor scalability due to the
maintenance of missing values in each subspace cluster. We observe
that the concept of fault tolerance in group recommendation can be
mapped to a graph search problem through α-β-core. This allows
us to develop GraphRec, a much faster method compared to FTSC.

2.1 Bipartite Graph and De�nition of α-β-core
We start by presenting the concept of k-core [11]. LetG = (V ,E) be
an undirected and unweighted graph, whereV is the set of vertices
and E be the set of edges. For a vertex-induced subgraph H ⊆ G,
we denote by δH (u) the degree of vertex u in H and by γH (u) the
number of vertices that do not connect to u. We use |V | to indicate
the cardinality of V , i.e., the number of vertices in V .

Definition 1. A subgraphH = (V ′,E ′) induced byV ′ ⊆ V ,E ′ ⊆
E is called a k-core candidate, if ∀v ′ ∈ V ′,δH (v

′) ≥ k . We say a
k-core candidate is a k-core if H is maximal with respect to k, i.e.,
�H ′, s .t .H ⊂ H ′ and H ′ is a k-core candidate.

We observe an equivalence relationship between in-class connec-
tivity and fault-tolerance of missing values in a �xed-sized graph
H ; for each vertex, δH (u) + γH (u) = |V | − 1. Then, the problem
of �nding degree-wise fault tolerant subspace clusters becomes
similar to that of �nding k-cores. However, it may be di�cult to
set k , since the tolerance thresholds are di�erent between users
and items. We further transfer the k-core paradigm to a bipartite
user-item recommendation system that requires more constraints
than one single parameter k . Instead of the matrix form in which
fault tolerance subspace clustering methods operates, we work on
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user-item rating data represented by an undirected and unweighted
bipartite graph:

Definition 2. Let U be the set of users and I be the set of items.
Unweighted edge set E is the collection of <U , I> pairs where each user
up ∈ U has rated item iq ∈ I . The bipartite graph G is constructed as
G = (U , I ,E).

Notice that in the bipartite graph, we do not count user-user or
item-item edges as missing edges for γH (u). Hence, we propose the
de�nition of α-β-core that is applicable to bipartite graphs:

Definition 3. A subgraph H = (U ′, I ′, (U ′, I ′)|E) induced by
U ′ ⊆ U and I ′ ⊆ I is called a α -β-core candidate, if ∀u ∈ U ,δH (u) ≥
α and ∀i ∈ I ,δH (i) ≥ β . We say a α -β-core candidate is a α -β-core if
H is maximal with respect to α and β , i.e., �H ′, s .t .H ⊂ H ′ and H ′

is a α-β-core candidate.

2.2 Mapping of Fault Tolerance Subspace
Clustering to Graph Search

Through the following lemma, we observe that the de�nition of
α-β-core is a relaxation of fault tolerance subspace clustering:

Lemma 1. LetΘ = {θ1, . . . ,θk } be the fault tolerant subspace clus-
tering model of bipartite graph G = (U , I ,E). LetUmin = min{|Ui | :
θi = (Ui , Ii )}, Imin = min{|Ij | : θ j = (Uj , Ij )}. Then each FTSC
candidate must be a subset of (Imin −OI ) - (Umin −OU ) - core of the
bipartite graph.

Proof. We �rst prove the lemma from the view of users; the
proof for items follows. For each user, the total number of rated
items plus the number of unrated items equals the size of the entire
set of items, i.e., for each FTSC candidate θi = (Ui , Ii ) and each
user u ∈ Ui , we have δθi (u) + γθi (u) = |Ii |. Since Imin ≤ |Ii | and
we require γθi (u) ≤ OI as the fault tolerance threshold, we have
δθi (u) ≥ Imin − γθi (u) ≥ Imin −OI . �

If we require that the minimum number of users and items in
a subset candidate cluster must be at least Umin and Imin , respec-
tively, to guarantee recommendation quality, the α-β-core is a re-
laxation to the de�nition of an FTSC subcluster, where the pattern
tolerance constraint is relaxed.

The cost of FTSC is mainly from dividing spaces into subspaces
by the pattern tolerance constraint, since there is an exponential
number of candidate subspaces. In FTSC recommendation systems,
however, large enough subspace clusters are aggregated into a large
pool of friends instead of using each subspace separately. Since each
large enough subspace cluster must be a subset of our α-β-core, we
claim that the pool of friends in FTSC recommendation systems is
also a subset of the correspondingα-β-core. This way, our algorithm
saves a lot when computing the subspace clusters.

2.3 E�cient Search of α-β-cores
[2] introduces anO(|E |) algorithm that e�ciently computes k-cores
in general undirected graphs. A nice property is that a higher-
number core must be a subset of lower-number cores. In other
words, a vertex that belongs to an i-core must also belong to a j-
core where j < i . Then, we can reconstruct an i-core by traversing
all vertices having shell numbers larger than i . The main idea is

that if we recursively remove all vertices of degree less than k and
the edges incident to them, the remaining graph is k-core. During
the process, we compute the shell number of each k-core:

Definition 4. A vertex v has shell number i if v belongs to an
i-core but not to an (i + 1)-core. Sv denotes vertex v’s shell number.

An i-core is thereby the subgraph induced by all vertices with
shell number ≥ i . In our implementation, we use a Fibonacci heap
[3], which features constant amortized cost for decrease key opera-
tions, in order to perform fast updates of vertex orders. To e�ciently
compute α-β-cores, we propose to use the shell numbers computed
in k-core decomposition as an o�ine index, based on:

Lemma 2. An α -β-core in bipartite graph (U , I ,E)must be a subset
of a min(α , β)-core in the general graph (U ∪ I ,E).

Proof. In an α-β-core, each user has rated at least β items and
each item is rated by at least α users. Since α ≥ min(α , β) and
β ≥ min(α , β), each vertex in the α-β-core must have at least
min(α , β) neighbors. �

We apply a similar strategy as [6] to iteratively prune disquali�ed
vertices from the min(α , β)-core. Algorithm 1 presents the details
of indexing and pruning.

Algorithm 1: Generate α-β-core
Input: Bipartite Graph G = (U , I ,E), shell numbers S , α , β
Output: Vertices in the α-β-core of G: U ′, I ′

1 U ′ ← {ui : Sui ≥ min(α, β )};
2 I ′ ← {Ij : Sij ≥ min(α, β )};
3 H ← (U ′, I ′, E′ |U ′, I ′);
4 calculate δH (u) for each u ∈ U ′, and δH (i) for each i ∈ I ′;
5 repeat
6 foreach u ∈ U ′ do
7 if δH (u) < α then
8 foreach (u, i) ∈ E′ do
9 δH (i) ← δH (i) − 1;

10 U ′ .r emove(u);
11 foreach i ∈ I ′ do
12 if δH (i) < β then
13 foreach (u, i) ∈ E′ do
14 δH (u) ← δH (u) − 1;
15 I ′ .r emove(i);
16 untilU ′ and I ′ do not change in one iteration;
17 returnU ′, I ′;

2.4 Generation of Pattern Tolerant Clusters by
α-β-core, GraphRec and GraphRec*

Given a target useruq , we �rst �nd the shell number Squ ofuq . Since
we only want information-rich friends, we require that the friends
should contain at least the same number of ratings as the target
user. That is, α = Suq . We treat β as a user input parameter that
describes the degree of fault tolerance for items to be considered.
After calculating the α-β-core, we �nd the connected components
to which the query user uq belongs. This connected component is
the friends set Fuq that our algorithm suggests for collaborative
�ltering. We name this algorithm as GraphRec.

However, online computation of connected components might
be slow; in the worst case, all edges in the α-β-core may have
to be visited. Also, the target user itself may be pruned in the
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Table 1: Statistics of the �ve datasets
ML_100K ML_1M ML_10M Jester2 Yelp

#user 943 6,040 69,878 59,132 1,029,432
#item 1,682 3,706 10,677 140 144,072
#rating 100,000 1,000,209 10,000,054 1,761,439 4,153,150

process of calculating the α-β-core and there is a risk of empty
result. Therefore, we propose approximate algorithm GraphRec*
that directly sets friends set Fuq as the α-β-core. Our experiments
demonstrate that this approach has acceptable accuracy; at the
same time it signi�cantly reduces the search cost.

2.5 Fixed Beta Approximation: GraphRec**
We found that the online generation of α-β-cores is the bottleneck
of GraphRec, as it has O(E) time complexity. Ntoutsi et al. [10]
suggest a threshold method to �lter out small sized clusters that
do not provide enough information for recommendations. Inspired
by this rationale, we propose GraphRec**, a variant of GraphRec
that �xes parameter β . That is, we set β as a constant B = (1 −
Ou ) · t · |U |, where t is a parameter representing the fraction of
total users that a subspace cluster must include. We propose to
generate an o�ine index to dump all α-B-cores, by storing a 2-D
binary matrix X : X (α ,u)=true, i� u ∈ α-B-core. Then, no graph
traversal is conducted at each online query. The space complexity
for this o�ine index is O(m · |U |), wherem is the max core number
that a user can have in the graph. With this e�ective index, the
online response time cost is reduced from O(|E |) to O(|U |) without
compromising accuracy, as we show in Section 3.

2.6 Complexity Analysis
According to [2], the cost of the k-core decomposition algorithm is
linear to the size of edges in a graph. The cost of �nding an α-β-core
is the sum of two parts. In line 4 of Algorithm 1, the initialization
of δH (v), i.e., the degree of vertices within min(α , β)-core, has an
O(|E |) cost that is linear to the number of edges in the core. After
initialization, the iterative removal of disquali�ed vertices costs
O(|E | + |V |), as each vertex and edge in the core will only be visited
once. Since each vertex has at least one edge, this cost reduces
to O(|E |). Therefore, the overall cost of generating an α-β-core
is O(|E |). The cost for generating the connected neighbors of a
given query user is also O(|E |), linear to the number of edges in
the corresponding α-β-core. Adding up, GraphRec and GraphRec*
need O(|V |) time for o�ine index generation and O(|V | + |E |) time
for online queries. The corresponding costs for GraphRec** are
O(|V | + |E |) and O(|V |), respectively.

3 EXPERIMENTS
3.1 Experimental Setup
Datasets.We use �ve datasets from MovieLens3, Jester24 and Yelp5,
summarized in Table 1. Note that ML_100K, ML_1M and ML_10M
are collected samples from MovieLens with di�erent sizes.

3http://grouplens.org/datasets/movielens
4http://eigentaste.berkeley.edu/dataset
5http://www.yelp.com/dataset_challenge

Competitors. We compare the performances of the following six
methods. All methods were implemented in C++ using standard
libraries and -O3 optimization �ag. We translated the original Java
source code of FTSC kindly provided by the authors of [10] to C++
code for a fair comparison. The experiments were conducted on an
Intelr Core™ Cpu i7-4170MQ @2.5GHz machine featuring 16 GB
of main memory and a 64-bit operating system.

• FTSC. Grid based fault-tolerant group recommendation.
• FTSC_hybrid. Hybrid fault-tolerant group recommendation.
• FTSC_den. Density based fault-tolerant group recommendation.
• GraphRec. α-β-core based fault-tolerant group recommenda-

tion.
• GraphRec*. Relaxed α-β-core based fault-tolerant group recom-

mendation.
• GraphRec**. Indexed version of α-β-core based fault-tolerant

group recommendation.

Task. We perform a task of rating prediction to evaluate the per-
formances of the methods mentioned above. Each rating dataset is
randomly divided into a training set and a test set by a ratio of 4 : 1.
In the o�ine phase, each competitor only accesses to the training
set to build their o�ine indices. In the online phase, the algorithms
are requested to compute a predicted values of all ratings in the
test set.

Metrics.We evaluate the performances with respect to MAE, RMSE
and online/o�ine running time. Ratings in Jester2 are normalized
into 1 ∼ 5 before calculating MAE and RMSE.

3.2 Results and Analysis
3.2.1 �ality of User Recommendations. Figures 1 and 2 show

the results for the ML-100K dataset. We set the fault tolerance con-
straints as OI = 0.4, OU = 0.3 and OE = 0.4. The parameters for
FTSC areminPts = 40, дrid = 3; the parameters for FTSC_hybrid
are minPts = 40, ϵ = 0.1; the parameters for FTSC_den are
minPts = 40, ϵ = 0.1. We set β = 100 for GraphRec and GraphRec*,
while for GraphRec**, t = 0.2. All algorithms except FTSC_den
present a similar accuracy. Regarding o�ine runtime, we observe
that FTSC class algorithms are at a magnitude of 100 seconds, while
GraphRec, GraphRec* and GraphRec** are at a magnitute of a few
seconds. Regarding online runtime, we can see that our relaxation
in GraphRec* improves online latency and our index in GraphRec**
renders the response time competent to FTSC algorithms. These
two algorithms improve the e�ciency of GraphRec, while preserv-
ing good accuracy.

However, for other datasets, the o�ine runtimes of FTSC class
algorithms exceed one day, which means that they are not feasible
for large scale applications. Therefore, we do not report their re-
sults. For GraphRec and GraphRec*, we use β = 100 in all datasets
and we set t = 0.01 for GraphRec** in all datasets. Tables 2 and
3 present the runtime results. Since MAE and RMSE are equiva-
lent norms, we only present MAE in Table 4 due to limited space.
GraphRec is the most accurate algorithm in all cases, however, the
query latency grows fast when size of dataset increases. GraphRec*
improves query latency but the degree of improvement depends
on the structure of datasets; it performs well in dense and small |I |
sets like Movielens datasets and Jester2, but fails to respond fast in
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Table 2: O�line Runtime (in sec)
ML_100K ML_1M ML_10M Jester2 Yelp

FTSC 712.503 >1day >1day >1day >1day
FTSC_hybrid 610.728 >1day >1day >1day >1day
FTSC_den 370.040 >1day >1day >1day >1day
GraphRec 0.050 0.223 0.769 0.191 6.441
GraphRec* 0.050 0.223 0.769 0.191 6.441
GraphRec** 1.965 21.689 188.297 24.576 17.767

Table 3: Online Runtime (in msec)
ML_100K ML_1M ML_10M Jester2 Yelp

FTSC 0.868 — — — —
FTSC_hybrid 0.649 — — — —
FTSC_den 0.017 — — — —
GraphRec 5.932 66.221 461.610 114.690 89.991
GraphRec* 1.540 10.858 14.117 27.361 70.226
GraphRec** 0.381 4.312 3.022 12.913 2.877

Table 4: MAE (normalized)
ML_100K ML_1M ML_10M Jester2 Yelp

FTSC 0.799 — — — —
FTSC_hybrid 0.797 — — — —
FTSC_den 0.946 — — — —
GraphRec 0.802 0.731 0.677 0.836 0.977
GraphRec* 0.832 0.802 0.891 0.925 1.068
GraphRec** 0.834 0.770 0.815 0.925 1.032

a sparse and diversi�ed sets like Yelp. GraphRec**, however, scales
well regardless the structure of the data and remains relatively
accurate compared to GraphRec.
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MAE RMSE

Figure 1: MAE & RMSE for User Recommendation in ML-
100k Dataset
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Figure 2: O�line & Online Runtime for ML-100k Dataset

3.2.2 �ality of Group Recommendations. Since there is no
ground truth in group recommendations, we use the individual
group members ratings to asses the quality. We randomly generate

1,000 user groups from the ML-100K dataset and use the average
rating for commonly rated items as ground truth. Each group con-
sists of 5 members and we test all common items for each group.
The parameter settings are the same as our experiments of user
recommendations. The runtimes of algorithms are linear to the
runtime in user recommendations with respect to the group size.
Therefore we do not report the runtime of group recommendation
experiments. In terms of e�ectiveness, as shown in Figure 3, our
methods are similar to FTSC algorithms.

 0

 0.2

 0.4

 0.6

FTSC FTSC_h FTSC_d GraphRec GraphRec* GraphRec**

MAE RMSE

Figure 3: MAE & RMSE for Group Recommendation in ML-
100k Dataset

4 CONCLUSION
In this paper, we show the connection between fault-tolerant group
recommendation and graph search. Based on it, we propose an e�-
cient fault-tolerant group recommendation method, GraphRec, and
its two variants which are based on the concept of α-β-core. Our
experiments demonstrate the e�ciency of our solutions, compared
to the state-of-the-art. In the future, we plan to investigate the adop-
tion of other graph structures to approximate α-β-cores, in order
to further improve e�ciency. Another interesting direction is to
scale GraphRec algorithms up by applying a distributed computing
setting.
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