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Abstract. The rise of the click farm business using Multi-purpose Mes-
saging Mobile Apps (MMMAs) tempts cybercriminals to perpetrate
crowdsourcing frauds that cause financial losses to click farm workers. In
this paper, we propose a novel contrastive multi-view learning method
named CMT for crowdsourcing fraud detection over the heterogeneous
temporal graph (HTG) of MMMA. CMT captures both heterogeneity
and dynamics of HTG and generates high-quality representations for de-
tection in a self-supervised manner. We deploy CMT on an industry-size
HTG of a representative MMMA WeChat and it significantly outper-
forms other detection methods. CMT also shows promising results for
fraud detection on a large-scale public financial HTG, indicating that it
can be applied in other graph anomaly detection tasks. We provide our
implementation at https://github.com/KDEGroup/CMT.

1 Introduction

Multi-purpose Messaging Mobile Apps (MMMAs) (e.g., WeChat4 developed by
Tencent) integrate several functionalities (e.g., chat, make transactions or book
tickets) into one app, attracting billions of users. Due to their popularity, MM-
MAs have become primary platforms for click farms [3] where click farm workers
are recruited to complete tasks (e.g., click on YouTube videos to create appear-
ance of popularity). MMMAs are used to hire workers, assign tasks and deliver
rewards. However, the rise of the click farm business tempts cybercriminals to
perpetrate crowdsourcing frauds where victims are click farm workers.

This paper5 studies crowdsourcing fraud detection (CFD) on WeChat with
the permission from Tencent. Fig. 1(a) depicts a typical process of such frauds:
– Step 1: Fraudsters send “add friend” requests to potential victims (ADD in

Fig. 1(a) - Step 1). Chat groups are created and cybercriminals join (CREATE
and ENTER in Fig. 1(a) - Step 1). They disguise as normal users.

⋆ Corresponding Author: Hui Li
4 https://www.wechat.com/en
5 More details are in our technical report: https://arxiv.org/abs/2308.02793.

https://github.com/KDEGroup/CMT
https://www.wechat.com/en
https://arxiv.org/abs/2308.02793
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Fig. 1: Crowdsourcing fraud in WeChat.
– Step 2: Fraudsters invite victims (PULL in Fig. 1(a) - Step 2) to join fraud

groups (ENTER in Fig. 1(a) - Step 2) by using high reward as bait.
– Step 3: Group members are encouraged to complete tasks (FINISH in Fig. 1(a)

- Step 3) posted by the group owner (POST in Fig. 1(a) - Step 3). A typical
task is transferring money to top up shopping cards. The cost of the first a few
tasks is not high. Fraudsters will pay the commission (TRANSFER in Fig. 1(a) -
Step 3) and may send bonus packages in the group (SEND in Fig. 1(a) - Step 3)
as an incentive. Group members can receive a random portion of the bonus.

– Step 4: With victims’ guard down, fraudsters post new tasks that request
much more money. Victims can see that other group members (fraud conspir-
ators) complete and get high rewards. Hence, they are deceived and transfer
money to complete new tasks (i.e., TRANSFER in Fig. 1(a) - Step 4). After that,
fraudsters disappear (i.e., DISAPPEAR in Fig. 1(a) - Step 4).
It is natural to model MMMA as a user-user interaction graph which is both

heterogeneous and dynamic: (1) Users can perform diverse operations due to
MMMAs’ all-in-one functionality; (2) Fraud actions span multiple time points,
making the MMMA graph a dynamic graph. Thus, the detection approach should
model user behaviors from multiple views so that both diverse user interactions
and temporal features can be fully leveraged. Moreover, CFD lacks of supervision
since (1) it is hard to label the huge volume of MMMA users, and (2) user features
are limited and accessing private information like chat content is forbidden due
to privacy issues. Hence, the detection model should seek additional supervision.

To solve the above issues, we propose Contrastive Multi-view Learning over
Heterogeneous Temporal Graph (CMT) for CFD. Our contributions are:
– We propose Heterogeneous Temporal Graphs (HTGs) to model MMMA data.
– We design a novel method CMT for CFD. CMT uses a heterogeneous graph

encoder to capture the heterogeneity of HTG. To model dynamics of HTG,
CMT constructs two types of user history sequences as two “views” of behavior
patterns. CMT further augments each sequence and its contrastive learning
encoder encodes sequences in a self-supervised manner.

– We deploy CMT for CFD on an industry-size HTG of WeChat and it signifi-
cantly outperforms baselines. Additional promising experimental results on a
large financial HTG show that CMT can be applied in other graph anomaly
detection (GAD) tasks like financial fraud detection.
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Fig. 2: Overview of CMT.

2 Related Work

Graph-based Anomaly Detection (GAD) detects anomalous graph objects (i.e.,
nodes, edges or sub-graphs) [7]. Recent GAD methods are mostly inspired by
GNNs [13] and self-supervised learning [12]. Anomaly detection in dynamic
graphs also attracts increasing interest, since many real-world networks can be
generally represented in the form of dynamic graphs. Recent GAD methods on
dynamic graphs mostly deploy temporal GNNs or combine GNNs and neural
networks for sequential modeling (e.g., GRU) [13,1].

3 Our Framework CMT

3.1 Overview

Fig. 2 depicts CMT. It models MMMA as a Heterogeneous Temporal Graph
(HTG, Sec. 3.2) and detects frauds over the HTG. It contains pretraining and
detection phases. In pretraining, CMT captures both graph heterogeneity and
dynamics: (1) CMT firstly uses a Heterogeneous GNN Encoder (HG-Encoder)
to encode heterogeneity (Sec. 3.3); (2) For graph dynamics, CMT constructs
two types of user history sequence as two “views” of user behavior patterns
(Sec. 3.4.1); (3) Then, CMT generate two augmented sequences for each user
history sequence (Sec. 3.4.2) to gain additional supervision; (4) After that, CMT
adopts two contrastive learning enhanced encoders (CS-Encoder), namely TSS-
Encoder and URS-Encoder, to encode sequences from different views (Sec. 3.4.3).
During detection, CMT estimates the abnormality of each user.

3.2 Modeling MMMA Graph as HTG

Firstly, we pre-extract some features pu ∈ R7 for each MMMA user u in WeChat.
Note that they are chosen through a strict investigation process to protect users’
privacy. Tab. 1 describes 7 binary node attributes used as features:
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Table 1: Description for binary node attributes used in CFD for WeChat
ID Description
1 Was the account registered in the past 90 days?
2 Is the account currently active?
3 Has the account owner verified his/her real identity?
4 Has the account owner changed his/her real identity?
5 Is the account currently banned by any app or third-party services?
6 Was the account reported by other users in the past 14 days?
7 Is the account rented?

– Attributes 1 - 4 describe account “value”: WeChat accounts that are registered
early, active or having verified and consistent identity are more valuable.

– Attributes 5 - 7 are related to CFD, but they are common features across
different anomaly detection tasks in WeChat: (1) normal businessmen may
rent multiple accounts to advertise their products in chat groups, and (2)
an account can be reported or banned in some services (e.g., games) due
to reasons like unfriendly behavior in games or verbal abuse. Hence, only
considering these attributes is not sufficient for accurate CFD.
Then, we construct a HTG to model MMMA. We first consider a basic het-

erogeneous graph (Fig. 1(b)) with three node types (i.e., user, group and device).
Device nodes indicate devices that users uses to login, and are uniquely identified
by IP address and device types. We include seven relation types: “create a group”
(CREATE), “join a group” (ENTER), “login on a device” (LOGIN), “invite someone to
join a group” (PULL), “send a bonus packet to a group” (SEND), “become WeChat
friends” (ADD), “transfer money” (TRANSFER). Based on the basic graph, we fur-
ther consider temporal dependencies and construct a HTG as a graph stream
containing basic heterogeneous graphs from discrete snapshots (Fig. 1(c)).

3.3 Graph Heterogeneity Encoding

For simplicity, in the following, we use the basic heterogeneous graph to illustrate
Heterogeneous GNN Encoder (HG-Encoder) for encoding graph heterogeneity.

Each user u’s raw features pu is projected as the initial embedding: h(0)
u =

Whpu, where Wh is a learnable matrix. For each group/device node, we aggre-
gate embeddings of its members (i.e., user neighbors) as its initial embeddings:

h(0)
g = mean({hv,∀v ∈ Ng}), h

(0)
d = mean({hv,∀v ∈ Nd}), (1)

where h
(0)
g and h

(0)
d are initial embeddings for group node g and device node d,

respectively. Ng and Nd denotes neighboring user nodes of g and d in the HTG,
respectively. mean(·) indicates average pooling.

The messaging passing mechanism in HG-Encoder is relation-wise. Represen-
tations of neighbors connected to a user u by the same relation r are aggregated:

x
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where the superscript (k) indicates the k-th iteration, ⊕ is the concatenation
operation, Nr

u denotes the relation-r-based neighbors of node u and j∗ ∈ Nr
u.

h
(k)
r,j∗

is the representation of node j∗ for relation r, and h
(0)
r,j∗

is equivalent to
h
(0)
j∗

. max(·) and sum(·) are max pooling and sum pooling, respectively. Wr,m

and br,m are parameters for the relation r.
HG-Encoder adds a self-connection to each user to retain its original features:

s(k+1)
r,u = Wr,sh

(0)
r,u + br,s, e(k+1)

r,u = RELU(m
(k+1)
Nr

u
⊕ s(k+1)

r,u ) (3)

where Wr,s and br,s are learnable parameters and RELU(·) is the Rectified
Linear Unit. The acquired er,u is passed to a feedforward neural network:

q(k+1)
r,u = RELU(Wr,q e

(k+1)
r,u + br,q), h(k+1)

r,u = q(k+1)
r,u

/∥∥∥q(k+1)
r,u

∥∥∥ (4)

where Wr,q and br,q are learnable weights.
With R relations, we have R relation-specific embeddings

{h(k+1)
1,i , . . . ,h

(k+1)
R,i } for a user node u. Since one relation-specific embed-

ding only represents the node from one perspective, we further design an
inter-relation aggregation module to learn more comprehensive user representa-
tions. It uses a relation-level attention mechanism to fuse different relation-wise
representations of a user u into its overall representation h

(k+1)
u :

h(k+1)
u =

R∑
r=1

βr·h(k+1)
r,u , βr =

exp(wr)∑R
i=1 exp(wi)

, wr =
1

|V |
∑
v∈V

aT ·tanh(Wr,w·h(k+1)
r,v +br,w)

(5)
where βr weighs the importance of relation r, Wr,w and br,w are learnable
weights, and a denotes the relation-level attention vector.

HG-Encoder stacks two GNN layers (Eqs. 2, 3, 4 and 5) to generate the final
representation h

(k+1)
u for user u. Due to the large volume of MMMA data, we only

apply messaging passing to user nodes to reduce the training cost. Group/device
representations are the average of their neighboring users’ representations.

HG-Encoder is connected to a score module containing a linear mapping layer
followed by a sigmoid function to estimate user abnormality. HG-Encoder can be
optimized with binary cross entropy loss over labeled user nodes. Note that HG-
Encoder does not maintain node embeddings binding to specific nodes. Instead,
learnable transformation weights W, b and a are updated during optimization.
Hence, it is inductive and can generate representations for new nodes.

3.4 Graph Dynamics Encoding

We design a dynamics encoding method to model HTG dynamics and seek addi-
tional supervision. It includes three parts: (1) user history sequence construction,
(2) sequence augmentation and (3) contrastive multi-view sequence encoding.
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3.4.1 User History Sequences CMT models two types of user history se-
quences from HTG, temporal snapshot sequence and user relation sequence, to
capture graph dynamics. They provide two different views of user historical data.

Temporal Snapshot Sequence. In our observation, a fraudster’s fraud actions
may spread across several time points within a short period. Differently, a nor-
mal user typically does not have many actions within a relatively short period.
Thus, we extract representations of a user in different snapshots as the tem-
poral snapshot sequence to distinguish normal users and fraudsters. We apply
HG-EncoderTSS (TSS is short for temporal snapshot sequence) over T basic het-
erogeneous graph in HTG to obtain the representations for all the nodes in each
snapshot. HG-EncoderTSS adopts the encoder design illustrated in Sec. 3.3. For
each user node u, its temporal snapshot sequence is seqtemp

u = [h1
u,h

2
u, . . . ,h

T
u ].

User Relation Sequence. A user’s direct actions that manifest in its outedges
reveal its characteristics. Fig. 1 shows that frauds typically involve several direct
actions (e.g., ADD, PULL and POST) spanning different stages of frauds (i.e., search,
gain trust and deceive). Thus, it is beneficial to model user relation sequence com-
posed of edges in all the 1-hop subgraphs of a user node from different snapshots
of HTG. Given a user node u and its 1-hop out-neighbors nodes {nu,1, . . . , nu,m},
u’ user relation sequence is {(u, nu,1, t1), . . . , (u, nu,m, tm)} where m is the num-
ber of out-neighbors of u and a tuple (u, nu,i, ti) indicates that an edge from u
to nu,i at time point ti. nu,i can be a user node, a group node or a device node.
If multiple possible nodes exist for nu,i at ti, we sample one or more of them as
nu,i as long as the number of the extracted user relation sequences is less than
a threshold. For any two nodes nu,i and nu,j in the constructed sequence with
i < j, (u, nu,i, ti) and (u, nu,j , tj) satisfy ti < tj . Some examples are provided
in the upper right corner of Fig. 2. User relation sequences describe user’s be-
haviors over time, which remedies the limitation of temporal snapshot sequences
that solely contain hidden states of the same user over time.

3.4.2 Data Augmentation We design two augmentation approaches reorder
and substitute to generate more meaningful sequences. As depicted in Fig. 3, they
can augment the same sequence from different views. For each temporal snapshot
sequence, we perform reordering twice to generate two augmented sequences. For
each user relation sequence, we generate two augmented sequences of which one
is from reordering and the other is from substitution.
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Reorder. Fraudsters usually perpetrate crowdsourcing frauds as a gang. A
fraudster may PULL victims into a group created by a conspirator, and then
CREATE another group for future deceptions. The two behavior order “CREATE-
PULL” and “PULL-CREATE” are both meaningful in CFD. Based on the above
observation, we adopt the reordering operator to produce augmented sequences.
Given a reordering ratio γ and a user history sequence su, we randomly shuffle a
continuous subsequence in su with length ⌊γ ∗|su|⌋ to generate another sequence
s′u. |su| indicates the length of su and s′u has the same length (i.e., |su|) as su.

Substitute. Substitution operator uses a similar element that roughly preserves
the same information to replace the selected one in the input user relation se-
quence. We utilize hypergraph to pick such similar elements. As shown in Fig. 4,
one sequence v1: v2 → v3 → v5 shares v3 with another sequence v6: v3 → v7.
They can naturally form a hypergraph with two hyperedges denoted by colored
areas in Fig. 4(II). Hyperedges help reveal the hidden connection. For example,
v1 and v6 are both fraudsters, v3 is a normal group, and v7 is a fraud group.
In original HTG, v1 has no direct connection with v7, which may be the cam-
ouflage for escaping detection. One account joining too many groups may alert
the system and fraudsters typically leverage multiple accounts for CFD. Using
hypergraph, we can find that v1 and v7 has a hyperconnection via v3, which
reveals the hidden information. For this case, v3 is an intermediate group that
may be the camouflage, while v7 is the true ending node (fraud group). Thus,
we can replace v3 with v7 to generate another sequence v2 → v7 → v5, being a
positive view of the original sequence of v1. More specially, given a substitution
ratio δ and a user relation sequence susr

u = [s1u, s
2
u, . . . , s

|su|
u ], we randomly select

⌊α∗ |su|⌋ nodes. For each element siu in the selected element set and its associate
hyperedge set Ehyper

i , we randomly select a hyperedge e from Ehyper
i and use the

element sju connected to siu via e to substitute siu.

3.4.3 Contrastive Sequence Encoder We design a Contrastive Sequence
encoder (CS-Encoder) to encode user history sequences. We adopt a position
encoding matrix P ∈ RT×d to preserve the order of a sequence, where T is the
time span of HTG. Given an input sequence representation s = [h1,h2, . . . ,hT ],
the position embeddings are injected to construct the position-aware input: h0

t =
ht +pt, where pt is the position encoding of the time point t and 1 ≤ t ≤ T . h0

t

is fed into the multi-head self-attention module with eight heads of Transformer
to generate the sequence representation. The position encoding layer and the
multi-head self-attention module constitute an encoding block. We stack two
encoding blocks in CS-Encoder.

Recall that there are two types of user history sequences and we have two
encoders in CMT to encode each of them:
– As shown in top left corner of Fig. 2, CMT uses TSS-Encoder for encoding

temporal snapshot sequences. TSS-Encoder includes an HG-EncoderTSS and
a CS-Encoder. HG-EncoderTSS encodes the temporal snapshot sequence of a
user u to seqtemp

u , which is later fed to the CS-Encoder. CS-Encoder generates
the sequence representation of the temporal snapshot sequence.
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– As shown in top right corner of Fig. 2, CMT uses URS-Encoder (URS is short
for user relation sequence) for encoding user relation sequences. URS-Encoder
adopts the same projection as Eq. 1 to generate node representations for con-
structing input sequence representations to CS-Encoder. Then, CS-Encoder
in URS-Encoder generates the representation of user relation sequence.
Given a mini-batch of N users and one type of their corresponding user

history sequence, we have augmented user history sequences of size 2N . For any
user u, we treat the representation sau of its one augmented sequence as the
anchor, and the representation spu of the other augmented sequence naturally
becomes the positive sample. The rest 2(N −1) augmented sequences within the
same batch are treated as negative samples. The contrastive loss function for
each positive pair ⟨sau, spu⟩ is shown as follows:

l(sau, s
p
u) = log

eθ(s
a
u,spu)/τ

eθ(s
a
u,s

p
u)/τ +

∑N
v=1 1[v ̸=u](eθ(s

a
u,sav)/τ + eθ(s

a
u,s

p
v)/τ )

(6)

where 1[v ̸=u] ∈ {0, 1} is the indicator function that equals 1 if v ̸= u otherwise
0, and τ is a temperature parameter. We adopt the cosine similarity to calculate
θ(u, v) = sim

(
g(u), g(v)

)
where g(·) is a two-layer MLP.

Since we can exchange two views of a user history sequence (i.e., the two
augmented sequences) in Eq. 6, we can define another loss by using spu as anchor.
The contrastive learning loss used to optimize TSS-Encoder/URS-Encoder is:

Lcl =
1

2N

N∑
i=1

[l(sau, s
p
u) + l(spu, s

a
u)]. (7)

We train both TSS-Encoder and URS-Encoder using a binary classification
task (i.e., estimate whether the source of a sequence is a fraudster) together with
the contrast task. For the binary classification task, TSS-Encoder/URS-Encoder
is connected to a score module defined as a linear mapping layer followed by a
sigmoid function. The suspicious score is used to calculate the binary cross-
entropy loss Lbinary over limited labeled data. The overall loss for optimizing
TSS-Encoder/URS-Encoder is defined as a multi-tasking loss: L = Lbinary+Lcl.

3.5 Putting All Together

In pretraining, TSS-Encoder, URS-Encoder and the detector HG-Encoderdetect
are trained independently on training data with limited labels. HG-Encoderdetect
uses the same design illustrated in Sec. 3.3 followed by the same score module
as used in the binary classification task of TSS-Encoder/URS-Encoder.

During detection, for a user u, we generated temporal snapshot sequence
representation hseqtemp

u
and user relation sequence representation hseqrel

u
using

pretrained TSS-Encoder and URS-Encoder, respectively. Then, as shown in
Fig. 2(b), the two generated representations and the initial sequence representa-
tion h

(0)
u are concatenated and fed into HG-Encoderdetect followed by its scoring

module to estimate the suspicious score of u. If the estimate score for u is larger
than 0.5, u will be predicted as a fraudster.
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4 Experiments

4.1 Experiment Setting

Data. We use two industry-size datasets for our experiments.
– WeChat Dataset: It contains 6.8 million user nodes, 151 thousand WeChat

chat group nodes, 126 thousand device nodes and 29.7 million edges covering
7 relations introduced in Sec. 3.2. Only 53,660 user nodes are manually labeled
by human experts: 10,749 of them are fraud users and 42,911 are normal users.
We use one day as the time interval between two time point and we derive 14
separate graph snapshots for HTG. The maximum number of sampled user
relation sequence for each user is 10. We randomly divide the labeled users by
a ratio of 8:1:1 for training, validation and test.

– FinGraph Dataset6: It contains an anonymized dynamic user-user interac-
tion graph in financial industry. It has approximately 4.1 million user nodes
and 5 million edges. Every node has 17 features. Edges have 11 types. There
are 82 thousand labeled user nodes: 1 thousand nodes are fraudsters and 81
thousand nodes are normal users. We randomly divide the labeled users by a
ratio of 8:1:1 for training, validation and test.

Baselines. We find that most GAD methods cannot handle an industry-size
MMMA graph. We choose the following scalable baselines:
– Non-GNN classification methods: XGBoost [2] and MLP. MLP is a feed-

foward neural network with three hidden layers and it has 128, 64, 32 neurons
in each layer, respectively.

– Homogeneous graph based methods: GCN [4] and GAT [11].
– Heterogeneous graph based methods: HG-Encoder illustrated in Sec. 3.3,

RGCN [10] and Simple-HGN [6].
– Graph based anomaly detection methods: DCI [12] and GeniePath [5].

DCI adopts contrastive learning for GAD.
– Temporal GAD methods: AddGraph [13]. AddGraph-H replaces GCN in

AddGraph with RGCN to model the heterogeneous information.
We adopt the same score module as CMT for baselines without a score mod-

ule. All methods adopt Adam optimizer. Representation dimension and batch
size are set to 64 and 256, respectively. Reordering and substitution ratios γ and
α are 0.4. All methods are terminated when they converge.
Evaluation Metrics. We use AUC and KS as evaluation metrics [9].

4.2 Overall Detection Results.

Tab. 2 presents the overall results. We analyze the experimental results as follows:

1. GNN-based approaches GCN and GAT generally exceed non-GNN methods
XGBoost and MLP, indicating the spatial dependencies depicted by graph
structure contain rich information that can improve detection performance.

6 https://ai.ppdai.com/mirror/goToMirrorDetailSix?mirrorId=28

https://ai.ppdai.com/mirror/goToMirrorDetailSix?mirrorId=28
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Table 2: Overall detection perfor-
mance. Results of CMT and best
baselines are shown in bold.

WeChat FinGraph
Method AUC KS AUC KS
XGBoost 0.7189 0.3281 0.7388 0.3911

MLP 0.7188 0.3404 0.7404 0.4072
GCN 0.8082 0.4790 0.7530 0.4205
GAT 0.7967 0.4591 0.7762 0.4496

RGCN 0.8400 0.5361 0.8002 0.5217
Simple-HGN 0.8484 0.5474 0.7798 0.4669
GeniePath 0.8234 0.5257 0.8115 0.5466

DCI 0.8328 0.5397 0.7737 0.4440
HG-Encoder 0.8682 0.5905 0.8194 0.5485
AddGraph 0.8221 0.4924 0.7488 0.3818

AddGraph-H 0.8452 0.5365 0.8013 0.5236
CMT 0.9014 0.6624 0.8354 0.5720

Table 3: Results of the ablation
study. Best results are in bold.

WeChat FinGraph
Method AUC KS AUC KS

HG-Encoder 0.8682 0.5905 0.8194 0.5485
CMTTSS 0.8853 0.6169 0.8233 0.5554
CMTTSScl 0.8957 0.6461 0.8331 0.5683
CMTURS 0.8911 0.6337 0.8267 0.5554
CMTURScl 0.8929 0.6347 0.8298 0.5625

CMTTSS−URS 0.8889 0.6316 0.8312 0.5692
CMTTSScl−URS 0.8999 0.6624 0.8355 0.5692
CMTTSS−URScl 0.8946 0.6413 0.8324 0.5703
CMTTSScl−URScl 0.9014 0.6624 0.8354 0.5720

2. HG-Encoder significantly exceeds other GNN-based methods. This observa-
tion supports our decision of using HG-Encoder as the backbone of CMT.

3. Both dynamic and heterogeneous graph based models achieve satisfactory
results and heterogeneous graph based methods generally outperform homo-
geneous graph based approaches, showing that temporal dependencies and
multi-relation information help model user behavior pattern better in CFD.

4. CMT significantly outperforms baselines including state-of-the-art dynamic
GAD methods AddGraph and AddGraph-H. It consistently exceeds all base-
lines on two datasets w.r.t. two metrics. The results show that CMT is su-
perior to baselines on CFD and can also be applied in other GAD tasks.

4.3 Ablation Study.

To verify the contribution of each component in CMT, we report results of
different variations of CMT in Tab. 3:
– HG-Encoder: It only uses Heterogeneous GNN encoder.
– Variations with the subscript TSS: It removes URS-Encoder and uses

TSS-Encoder only.
– Variations with the subscript URS: It removes TSS-Encoder and uses

URS-Encoder only.
– Variations with the subscript TSS-URS: Both TSS-Encoder and URS-

Encoder are used.
– Smaller subscript “cl” for either TSS or URS: The contrastive loss Lcl

is used together with Lbinary for optimizing TSS-Encoder or URS-Encoder.
For the subscript TSS or URS without the smaller subscript “cl”, only Lbinary
is used for optimizing TSS-Encoder or URS-Encoder.
From the results in Tab. 3, we can observe that:

1. Most modules bring promising performance gain. The incorporation of either
TSS Encoder or USR Encoder brings performance gain, as both CMT-TSS
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Fig. 5: Sensitivity analysis of γ and α on WeChat dataset.

Fig. 6: t-SNE projection of user node representations generated by CMT: (1)
Red: fraudsters. (2) Green: normal users.

and CMT-USR significantly outperform HG-Encoder. In a few cases (e.g.,
compare CMTTSS-URS and CMTTSScl−URS), some modules do not signifi-
cantly improve the results on one dataset, but they show obvious enhancement
on the other dataset.

2. The complete CMT (CMTTSScl−URScl) generally shows best results. For the
case where it is not the best, the performance gap is subtle, showing the
effectiveness of modeling two views of historical data together.

Overall, we conclude that each module in CMT contributes to its performance.

4.4 Sensitivity analysis of γ and α.

Fig. 5 reports AUC of CMT on WeChat when changing γ and α. We can see that
changes of γ and α do not significantly affect the performance of CMT. And the
resulting AUC performance is around 0.89-0.9. The observation shows that our
data augmentation method is not sensitive to augmentation hyper-parameters.

4.5 Quality of Representation.

We adopt t-SNE [8] to project representations of user nodes in the test set into a
2-dimensional space. From Fig. 6, we can see that representations of normal users
and fraudsters have a clear distinction, showing that CMT is able to produce
high-quality representations for CFD.

5 Conclusion

In this paper, we present CMT for detecting crowdsourcing fraud. We adopt the
idea of data augmentation, multi-view learning and contrastive learning when de-
signing CMT. CMT can capture the heterogeneity and the dynamics of MMMA
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data from different views and alleviate label reliance. Experiments demonstrates
the effectiveness of CMT. In the future, we plan to further improve the design
of CMT by leveraging the fraud patterns that CMT helps to discover.
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