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Abstract

Code search engine is an essential tool in soft-
ware development. Many code search methods
have sprung up, focusing on the overall rank-
ing performance of code search. In this paper,
we study code search from another perspective
by analyzing the bias of code search models.
Biased code search engines provide poor user
experience, even though they show promising
overall performance. Due to different develop-
ment conventions (e.g., prefer long queries or
abbreviations), some programmers will find the
engine useful, while others may find it hard to
get desirable search results. To mitigate biases,
we develop a general debiasing framework that
employs reranking to calibrate search results.
It can be easily plugged into existing engines
and handle new code search biases discovered
in the future. Experiments show that our frame-
work can effectively reduce biases. Meanwhile,
the overall ranking performance of code search
gets improved after debiasing. Our implemen-
tation is available at: https://github.com/
KDEGroup/CodeSearchDebiasing.

1 Introduction

Software development is a repetitive task as pro-
grammers usually reuse or get inspiration from ex-
isting implementations. Studies show programmers
spent 19% of their programming time on search-
ing source code (Brandt et al., 2009). Therefore,
code search, which refers to the retrieval of rele-
vant code snippets from a codebase according to
programmer’s intent that has been expressed as a
query (Liu et al., 2022), has become increasing
important (Grazia and Pradel, 2022).

Although much effort has been devoted to im-
proving code search, existing works mostly empha-
size the ranking performance of code search w.r.t.
metrics like Mean Reciprocal Rank (MRR) and Hit
Ratio@K (HR@K) (Liu et al., 2022; Grazia and
Pradel, 2022). In this paper, we study code search
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from another perspective. We find that state-of-
the-art code search methods prevalently have dis-
criminatory behaviors (i.e., different performance)
toward queries or code snippets with certain prop-
erties (e.g., length). The observation shows, even
though the overall ranking performance is good,
programmers may still be dissatisfied with search
results when their input queries or desired code
snippets fall into those categories that code search
models cannot handle well. We name our obser-
vation as Code Search Bias, inspired by the AI
bias that attracts great attention recently (Mehrabi
et al., 2021). Code search bias hurts user experi-
ence. Due to different development conventions
(e.g., prefer long queries or abbreviations), users
(programmers) of code search engines with biases
will have different user experience, i.e., some users
will find the engine useful, while others may find it
hard to get desirable search results.

Note that most studies of bias in NLP focus on
societal bias (Blodgett et al., 2020). For exam-
ple, the gender bias of NLP algorithms may pose
the danger of giving preference to male applicants
in automatic resume filtering systems (Sun et al.,
2019). However, in applications like search en-
gines (Ovaisi et al., 2020) and recommender sys-
tems (Lin et al., 2021a; Xv et al., 2022), some bi-
ases without societal factors are widely studied as
they make the system biased toward certain search
results and harm the performance. For instance, po-
sition bias exists in learning-to-rank systems where
top search results are more likely to be clicked even
if they are not the most relevant results (Agarwal
et al., 2019; Xv et al., 2022). But it does not mean
any discriminatory behaviors toward certain groups
of people. Similarly, code search bias does not in-
volve societal factors.

Considering that our observation has revealed
the widespread code search bias in existing models,
we aim at designing a general debiasing frame-
work that can be easily plugged into existing code
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search engines. In the context of code search bias,
debiasing indicates removing the correlations be-
tween code search quality and certain properties of
queries and code snippets. Our proposed debiasing
framework adopts the idea of reranking to calibrate
search results. It helps state-of-the-art code search
models overcome code search bias and their overall
performance can be improved at the meantime. In
summary, our contributions are:
1. To our best knowledge, we are the first to study

code search bias. We reveal the widespread
existence of seven code search biases.

2. To mitigate code search bias, we propose a gen-
eral debiasing framework using reranking. It
can be easily plugged into existing engines.

3. Extensive experiments show that our debiasing
framework not only helps alleviate code search
bias but also improves the overall ranking per-
formance of state-of-the-art code search models.

2 Related Work

Code Search. Early code search methods adopt
traditional information retrieval methods to esti-
mate the relevance between the query and a code
snippet (Lv et al., 2015; Bajracharya et al., 2010).
Recent works adopt deep neural networks to embed
query and code into vectors. Then, the code search
task is performed by measuring the similarity be-
tween vectors. Along this direction, various deep
learning based methods have been proposed, in-
cluding but not limited to recurrent neural network
(RNN) based approaches (Gu et al., 2018), convolu-
tional neural network (CNN) based approaches (Li
et al., 2020), graph neural network (GNN) based
approaches (Wan et al., 2019) and pre-training ap-
proaches (Feng et al., 2020; Guo et al., 2021, 2022).

Bias and Debias. Many AI systems exhibit cer-
tain biases that bring unfairness and degrade the
performance (Mehrabi et al., 2021). Various debi-
asing methods have been proposed and they can be
roughly divided into three types:
1. Pre-processing methods remove biases in train-

ing data. Calmon et al. (2017) design a
framework for discrimination-preventing pre-
processing to enhance data with multi goals.
Biswas and Rajan (2021) analyze bias prompts
in data preprocessing pipelines and identify data
transformers that can mitigate the pipeline bias.

2. In-processing methods mitigate biases in the
model training step. Garimella et al. (2021)

propose a debiasing method that requires pre-
training on an extra small corpus with bias miti-
gation objectives for mitigating social biases in
language models. Lin et al. (2021a) propose a
debiasing framework with three strategies that
be used as regularizers in the training objective
of review-based recommender systems.

3. Post-processing methods handle biases after
model training. Petersen et al. (2021) translate
debiasing into a graph smoothing problem and
propose a post-processing coordinate descent al-
gorithm. Kim et al. (2019) design Multiaccuracy
Boost, which uses an auditor to identify subpop-
ulation biases and further uses it for debiasing
in the post-processing.
Although many debiasing methods exist, they

cannot be directly used for code search biases. Our
method belongs to the post-processing category
and it is tailored for removing code search biases.

3 Analysis of Code Search Biases

3.1 Analysis Settings

Data: We use CoSQA dataset1 (Huang et al., 2021)
with 20,604 query-code pairs. Each query is writ-
ten in English while each code snippet is a Python
code snippet. The data is annotated by at least 3
human annotators. We randomly split the dataset
by 70%/30% for training and test. We adopt byte-
pair encoding tokenization, a standard tokenization
method used in preprocessing code search data, to
tokenize queries and code snippets. As queries
are typically short, stop words in queries are not
removed. Note that there are other public code
search datasets, e.g., CodeSearchNet dataset (Hu-
sain et al., 2019), DeepCS dataset (Gu et al., 2018),
and CodeXGLUE dataset (Lu et al., 2021). We
choose CoSQA dataset as it includes real code
search queries, while other datasets use code docu-
ments (e.g., the first sentence in the function com-
ments) to mimic queries. Using CoSQA helps us
better discover biases in a real code search scenario.

Code Search Models: We select six represen-
tative code search approaches in the literature
for our bias analysis, including DeepCS2 (Gu
et al., 2018), CQIL3 (Li et al., 2020), Code-

1https://github.com/microsoft/CodeXGLUE/tree/main/Text-
Code/NL-code-search-WebQuery

2https://github.com/guxd/deep-code-search
3https://github.com/flyboss/CQIL
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Figure 1: Examples of code search biases.

BERT4 (Feng et al., 2020), CoCLR5 (Huang et al.,
2021), GraphCodeBERT4 (Guo et al., 2021) and
UniXcoder4 (Guo et al., 2022). They are all un-
der the MIT license, allowing us to adopt them
in this study. We have observed similar biases in
all the six methods. Due to space limitation, we
only show analysis results of CQIL, CodeBert and
GraphCodeBERT, and other methods are reported
in our debiasing experiments in Sec. 5. We follow
authors’ descriptions to set hyper-parameters when-
ever possible in order to tune the performance of
each method towards its best.

Evaluation Metrics: We use Mean Reciprocal
Rank (MRR), the most widely used measure for
code search, to illustrate our bias analysis. It is
defined as MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, where |Q| is

the number of queries and ranki indicates the rank
of the ground-truth code snippet w.r.t. the i-th
query. We also adopt another prevalent metric Hit
Ratio@K (HR@K, the percentage of ground-truth
code snippets that are in the top-K ranking lists
from code search models) and results are discussed
in Sec. 5. Note that most current code search stud-
ies assume that there exists only one good result for
each query and public code search datasets are de-
signed this way. Hence, the popular ranking metric
Normalized Discounted Cumulative Gain (NDCG)
will be consistent with MRR. Our reported results
are averaged over several runs.

3.2 Analysis Results

Based on the characteristics of code search and
the data involved in the search process, we have
found and verified seven code search biases. A

4https://github.com/microsoft/CodeBERT
5https://github.com/Jun-jie-Huang/CoCLR

general motivation to consider these seven factors
is that they are commonly adopted as parameters
in the experiments of existing papers as they affect
the results of code-related tasks (Hu et al., 2023;
Wan et al., 2018; McBurney and McMillan, 2016).
The performance of CQIL, CodeBERT and Graph-
CodeBERT w.r.t. the seven biases are presented in
Fig. 1. We first group queries (in the test set) or
ground-truth code snippets in intervals with equal
lengths w.r.t. certain statistics. Then, we investi-
gate whether code search models show different
behaviors towards different intervals. The x-axis
illustrates the intervals. To better visualize the re-
sult of bias analysis, data in Fig. 1 (a) and (c) is
grouped in an interval with a length of 4, data in
Fig. 1 (f) is grouped in an interval with a length of
0.15, and data in other subfigures is grouped in an
interval with a length of 1. The left y-axis denotes
the number of queries or ground-truth code snip-
pets in each interval while the right y-axis shows
the average MRR score for data in each interval.
We provide our analysis as follows:

Bias 1 w.r.t. Lengths of Ground-Truth Code
Length bias (i.e., model makes decisions based

on or affected by the length of texts) has been
verified in various information retrieval and nat-
ural language processing tasks such as textual
matching (Jiang et al., 2022) and machine transla-
tion (Murray and Chiang, 2018). This inspires us to
investigate the effect of the length of ground-truth
code snippets on code search models.

Fig. 1 (a) shows the performance of three models
w.r.t. code lengths. From Fig. 1 (a), we can see
that lengths of most code snippets are between 20
and 50. Furthermore, we can observe that: (1) In
general, the longer the ground-truth code snippet is,
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the better the MRR score is. There are some sharp
drops in MRR when code length gets much longer.
The reason may be the number of ground-truth
code snippets in intervals with longer lengths (e.g.,
> 70) is quite small and a few hard cases affect the
average performance in those intervals. (2) Code
search models show a clear bias towards intervals
with longer lengths of ground-truth code snippets,
i.e., longer ground-truth code snippets are more
easily to match. For instance, the MRR scores of
GraphCodeBERT are 0.57 and 0.83 for the inter-
val with average code length 36 and the interval
with average code length 68, respectively. Intu-
itively, longer ground-truth code snippets provide
more semantic information, making it more easy
to be modeled and matched. From a software en-
gineering perspective, long code snippets are more
distinctive than short ones: it is more likely for two
short code snippets to be similar, making it hard to
distinguish the correct one from other candidates.

Bias 2 w.r.t. Lengths of Queries
Similar to Bias 1, we have identified the bias

w.r.t. lengths of input queries. As shown in Fig. 1
(b), as query length increases, MRR decreases, indi-
cating that longer queries have worse search results.

Bias 3 w.r.t. Numbers of AST Nodes
One major difference between natural languages

(NLs) and programming languages (PLs) is that
PLs have strict syntax rules that are enforced by
language grammars. Abstract Syntax Tree (AST),
used in compilers, represents the abstract syntactic
structure of the source code. Each node of ASTs de-
notes a construct or symbol occurring in the source
code. Compared to plain source code, ASTs are
abstract and some details (e.g., punctuation and
delimiters) are not included. ASTs are used in
various code-related tasks like code summariza-
tion (Lin et al., 2021b), code completion (Wang
and Li, 2021), issue-commit link recovery (Zhang
et al., 2023) and refactoring (Liu et al., 2023) for
capturing syntactic information.

Considering the importance of ASTs for mod-
eling PL syntax, we investigate the influence of
ASTs on code search models. Usually, longer code
snippets correspond to deep ASTs. However, some
complex yet short code snippets such as list parsing
in Python may also have deep ASTs. Hence, Bias
3 is not equivalent to Bias 1. Fig. 1 (c) demon-
strates the impacts of AST node numbers on the
performance of code search models. We can ob-
serve the bias: code search models show diverse

performance towards different intervals. For exam-
ple, the MRR scores of GraphCodeBERT are 0.6
and 0.87 for the interval with average AST node
number 40 and the interval with average AST node
number 72, respectively. The performance gap is
significant in code search.

Bias 4 w.r.t. Depths of ASTs
Similar to Bias 3, we further identify the bias

w.r.t. AST depths which also depict the complexity
of ASTs. Note a deep AST may not have many
AST nodes. Hence, Bias 3 and Bias 4 are differ-
ent. Fig. 1 (d) shows the impact of AST depths.
In Fig. 1 (d), code snippets are grouped by the
depth of their ASTs and the interval length is 1.
We can observe the existence of bias: code search
models have diverse performance towards different
intervals containing ASTs with different depths.

Bias 5 w.r.t. Numbers of Reserved Words
If we do not consider identifiers and constants,

the vocabulary of code tokens containing reserved
words of a PL is small. We investigate the im-
pact of reserved words on the behaviors of code
search models. Specially, we consider Python
reserved words if, for, while, with, try and
except. They are related to control structures and
demonstrate the programming logic of designing a
function. Fig. 1 (e) demonstrates the performance
towards ground-truth code snippets containing dif-
ferent numbers of reserved keywords. We can see
the existence of a bias: performance of code search
models varies when the number of code keywords
changes. We can observe that the considerable
growth of the MRR score when the number of key-
words in ground-truth code snippets increases. One
possible reason is that logic-related reserved words
in ground-truth code snippets help code search
models better capture the logic of the code. There-
fore, it is easier for code search models to match
the ground-truth code snippet and the user intent
that manifests in the queries when code contains
more logic-related reserved words.

Bias 6 w.r.t. Importance of Words
Queries are typically concise, containing only a

few words. For each query, we calculate the max
TF-IDF values for the words contained in the query
to estimate how important words contained in a
query are. We have also calculated the average and
the minimum TF-IDF values and similar results can
be observed. TF-IDF helps avoid amplifying the
importance of words that appear more frequently



in general (e.g., the word “an” in a query “sort
an array”). When calculating TF-IDF, we treat
each query in CoSQA as a document. Results are
presented in Figs. 1 (f), and we can observe the
existence of a bias, i.e., code search models show
different performance for queries containing words
with varying importance. Intuitively, the important
words (e.g., “sort”) contained in a query help code
search models better understand user intent and
match the ground-truth code snippet.

Bias 7 w.r.t. Numbers of Overlapping Words
Early code search methods rely on the overlap-

ping words of queries and code snippets to estimate
query-code relevance scores. However, overlap-
ping words received less attention in deep learning
based code search models (Zhu et al., 2020). We in-
vestigate the influence of overlaps on the behaviors
of the three code search models which all leverage
deep learning. Fig. 1 (g) illustrates the performance
on test query-code pairs that have different num-
bers of overlapping words. From the figure, we
can observe a bias: models produce better MRR
towards query-code pairs with more overlapping
words. In other words, deep learning-based code
search models also capture overlapping words and
treat them as a strong signal of a matching result,
confirming the standard hypothesis that overlap-
ping words affect code search. In summary, we

have identified seven distinct biases, meaning that
code search models show different performance
when facing input queries or ground-truth code
snippets with different characteristics. In practice,
code search biases result in the inconsistence of
user experience: depending on the characteristics
of queries and/or ground-truth code snippets, the
quality of search results varies.

4 Mitigate Code Search Biases

In this section, we illustrate our debiasing frame-
work shown in Fig. 2. Our goal is to design a gen-
eral framework: (1) it can be easily plugged into
existing code search models without much addi-
tional effort, and (2) it can handle new code search
biases that are not discovered at the moment.

We opt to adopt reranking, a post-processing
method, to calibrate code search results. The idea
is to rerank the ranking results provided by code
search models. Even though code search biases
are prevalent in many cases as we have seen in
Fig. 1, many code search models show promising
overall performance (i.e., high MRR or HR@K).

Code 1

Sequential

Reranking

Parallel 

Reranking

def bubble_sort(array):

for i in range(n): …

Query: How to 

write a quick sort

Code 
Search
Engine

Code 2

Code 3

Code 4

Code 3

Code 1

Code 2

Code 4

Figure 2: Overview of the debiasing framework.

Therefore, for biased cases, the ground-truth code
snippets are not too far away from the top of search
results. Otherwise, the overall MRR scores will
be quite low according to its definition. Similarly,
we believe that any new code search biases also
meet the above condition (i.e., biases exist but over-
all search performance is high). For biased cases,
a successful reranking method can help ground-
truth code snippets emerge on top. Post-processing
search results also avoid modifying existing code
search models. This way, the designed debiasing
framework is orthogonal to a specific code search
method and it can be easily used as a reinforcement.

Next, we first demonstrate how our framework
mitigates one bias. Then, the way that our frame-
work mitigates multiple biases is presented.

4.1 Mitigate A Single Bias via Reranking

Our idea is to use the prior knowledge of bi-
ased search from the training data to determinate
whether a similar search in the test set will face a
bias issue and require reranking. The detailed steps
of mitigating a single bias via a single reranker are:
1. Firstly, we embed all queries in the training

set into vectors using a pre-trained CodeBERT
model. For a test query (i.e., the current search),
after it is embedded by the CodeBERT model,
we retrieve its top-M most similar queries in
the training set based on cosine similarity be-
tween vectors. These retrieved queries and their
corresponding ground-truth code snippets in the
training set will provide some hints on whether
the current search may face a certain bias.

2. Then, we identify intervals in training data
where code search models show very high per-
formance. It is likely that search results are not
severely biased within these intervals. Other-
wise the MRR scores for these intervals should
be low by its definition. For such intervals, it
is unnecessary to rerank for debiasing. We sort
the search cases in training set by their MRR



scores and retrieve cases with top N% maxi-
mum MRR scores. We adopt k-means to cluster
the retrieved training search cases into S clus-
ters. Then, the maximum and minimum MRR
scores in each cluster are used as the boundaries
of the cluster.

3. For a test search t, if its top-M most similar
training query-code pairs have an average MRR
score that falls in the range of any cluster, then it
is likely that code search models provide reason-
able relevance prediction scores for the candi-
date code snippets contained in these query-code
pairs and our method will not rerank these can-
didate code snippets. For other candidate code
snippets, reranking is required.

4. For a candidate code snippet c that requires
reranking, the reranking score is calculated as:

R = Scoreoriginal
c + P (Te < Tm), (1)

where Scoreoriginal
c denotes the original ranking

score of c, Te represents the MRR value of the
code search model on a training query-code pair,
Tm represents the overall MRR value of the code
search model on the training data, and P (Te <
Tm) indicates the percentage of training query-
code pairs that the code search model shows a
lower MRR score than its overall MRR score
over all the training pairs.

5. For the test search t, our method will use rerank-
ing scores R instead of Scoreoriginal as relevance
scores for all candidate code snippets that are
identified to require reranking in Step 3. Then,
the ranking list is reranked according to new
relevance scores.

We discuss the impact of the choices of M , N and
S in Analysis 5 of Sec. 5.

4.2 Mitigate Multiple Biases

To mitigate multiple code biases together, we adopt
two simple yet effective strategies to assemble re-
rankers for different code search biases:
1. Sequential Reranking: Adopt each reranker

sequentially. The relevance scores from a previ-
ous reranker will be used as the base relevance
scores (i.e., Scoreoriginal) in the next reranker.

2. Parallel Reranking: Adopt each reranker paral-
lel and use the average of the relevance scores
from all rerankers between a candidate code
snippet and the current search as the prediction.

Table 1: Comparisons of two reranking methods. “S”
and “P” indicate sequential reranking and parallel
reranking, respectively. R1 and R2 are reranking scores
from reranker 1 and reranker 2, respectively.

Method Code Reranker 1 Reranker 2 Relevance Score

S
c1 Scoreoriginal

c1 +R1 Scoreoriginal
c1 +R1 +R2 Scoreoriginal

c1 +R1 +R2

c2 Scoreoriginal
c2 Scoreoriginal

c2 Scoreoriginal
c2

P
c1 Scoreoriginal

c1 +R1 Scoreoriginal
c1 +R2 Scoreoriginal

c1 + (R1 +R2)/2

c2 Scoreoriginal
c2 Scoreoriginal

c2 Scoreoriginal
c2

Tab. 1 provides examples to illustrate relevance
scores between a query and two candidate code
snippets c1 and c2. From final relevance scores
of the code snippet c1, we can see that sequen-
tial reranking emphasizes the adjustment of rerank-
ing as it aggregates reranking terms from different
rerankers. Differently, parallel reranking averages
reranking terms from different rerankers, avoiding
a sharp reranking. If none of the rerankers adjust
the relevance score, then the final relevance scores
are the same for both methods, as shown in the
case of the code snippet c2. Empirically, different
ordering shows only slight performance difference,
as we will show in Analysis 4 of Sec. 5.

Note the above two strategies in our debiasing
framework looks similar to Boosting and Bagging
methods used in Ensemble Learning (Zhou, 2009),
but they are not the same: (1) Compared to Boost-
ing methods like AdaBoost (Freund and Schapire,
1997), sequential reranking does not increase the
weights for wrongly labeled training samples (bi-
ased/unbiased cases) in previous reranker since
each reranker is designed for different targets (miti-
gate different biases) and wrongly labeled samples
in the previous reranker may be correct samples for
the next reranker. Differently, Boosting methods
will increase weights of incorrectly predicted sam-
pled for training the next learner. (2) Compared to
Bagging methods (Breiman, 1996), parallel rerank-
ing does not adopt sampling to prepare different
datasets (from the complete training set) for use in
each reranker. The reason is that, to make our de-
biasing method simple and general, our reranking
method is designed as a similarity-based adjuster
with simple rules instead of a learning-based ap-
proach. In a large training set, most similar queries
that are used to judge whether current search is
facing bias may not be selected in sampling, which
negatively affects debiasing.

5 Debiasing Experiment

In this section, we will illustrate the effectiveness of
our debiasing framework on mitigating code search



Figure 3: Mitigate biases using sequential reranking.

Figure 4: Mitigate biases using parallel reranking.

biases. Results are reported using our framework
to mitigate the seven biases for the six code search
methods on the CoSQA dataset. By default, the
order of rerankers in sequential reranking is Biases
7, 6, 3, 4, 2, 5 and 1. We also analyze the impact
of reranker order in Analysis 4 of our experiments.
Our method requires three hyper-parameters: M ,
N and S, as illustrated in Sec. 4.1. We search M ,
N and S in {1, 3, 5}, {10, 15, 20} and {1, 3, 5},
respectively. Best results (M = 1, N = 10 and
S = 1) are reported.

Analysis 1: Debiasing Results. We first analyze
the results after debiasing. Due to space limita-
tion, we only visualize results of Bias 1 (Lengths
of Code), Bias 3 (Numbers of AST nodes), Bias
4 (Depths of ASTs) and Bias 6 (Importance of
Words) for CQIL, CodeBERT and GraphCode-
BERT. For other code search methods and biases,
we observe similar results. Fig. 3 shows the per-
formance before and after mitigating biases us-
ing sequential reranking. The result using parallel
reranking is presented in Fig. 4. From visualiza-
tion results, we can clearly see that, for all the four



Table 2: Overall performance changes of code search models using sequential reranking.

Method Name
MRR HR@1 HR@5 HR@10

Before After Before After Before After Before After

DeepCS 0.295 0.428 (+45%) 0.219 0.366 (+67%) 0.375 0.489 (+30%) 0.462 0.553 (+20%)
CQIL 0.296 0.384 (+30%) 0.216 0.299 (+38%) 0.377 0.478 (+27%) 0.469 0.557 (+19%)

CodeBERT 0.474 0.569 (+20%) 0.363 0.471 (+30%) 0.598 0.685 (+15%) 0.712 0.782 (+9.8%)
CoCLR 0.756 0.770 (+1.9%) 0.641 0.661 (+3.1%) 0.909 0.917 (+0.88%) 0.967 0.971 (+0.41%)

GraphCodeBERT 0.641 0.695 (+8.4%) 0.524 0.587 (+12%) 0.790 0.831 (+5.2%) 0.882 0.911 (+3.3%)
UniXcoder 0.702 0.737 (+5.0%) 0.584 0.630 (+7.9%) 0.862 0.880 (+2.1%) 0.935 0.940 (+0.53%)

Table 3: Overall performance changes of code search models using parallel re-ranking.

Method Name
MRR HR@1 HR@5 HR@10

Before After Before After Before After Before After

DeepCS 0.295 0.425 (+44%) 0.219 0.363 (+65%) 0.375 0.485 (+29%) 0.462 0.551 (+19%)
CQIL 0.296 0.383 (+29%) 0.216 0.300 (+39%) 0.377 0.476 (+26%) 0.469 0.551 (+17%)

CodeBERT 0.474 0.579 (+22%) 0.363 0.483 (+33%) 0.598 0.694 (+16%) 0.712 0.780 (+9.6%)
CoCLR 0.756 0.769 (+1.7%) 0.641 0.661 (+3.1%) 0.909 0.915 (0.66%) 0.967 0.971 (+0.41%)

GraphCodeBERT 0.641 0.666 (+3.9%) 0.524 0.552 (+5.3%) 0.790 0.810 (+2.5%) 0.882 0.895 (+1.5%)
UniXcoder 0.702 0.716 (+2.0%) 0.584 0.602 (+3.1%) 0.862 0.872 (+1.2%) 0.935 0.939 (+0.43%)

biases, MRR scores of most intervals increase af-
ter deploying our debiasing framework, showing
the effectiveness of our debiasing framework. Se-
quential reranking shows a slightly better debiasing
result than parallel reranking (e.g., see CQIL(b) and
GraphCodeBERT(b) in Fig. 3 and Fig. 4). However,
sequential reranking is not as efficient as parallel
reranking as it processes each reranker one by one.

Analysis 2: Changes of Code Search Perfor-
mance after Debiasing. Tab. 3 and Tab. 2 il-
lustrate the changes of overall code search perfor-
mance after debiasing using sequential reranking
and parallel reranking, respectively. From results,
we can see that, after debiasing, overall code search
performance w.r.t. MRR or HR@K significantly
increases. The improvements are especially no-
ticeable for DeepCS, CQIL and CodeBERT: MRR
and HR@K of these methods increase by 9.6%-
67%. The reason is that the original search per-
formance of the three methods is not high and
there is still large room for improvement. Even for
CoCLR, GraphCodeBERT and UniXcoder which
show quite high MRR (>0.6) and HR@K (>0.5)
before debiasing, our debiasing framework still
helps improve the overall code search performance.
Thus, we can conclude that mitigating code search
bias has a positive effect on improving the overall
code search performance.

Analysis 3: Impacts of Applying Multiple
Rerankers. Next, we investigate whether applying
multiple rerankers brings better debiasing results
than using a single reranker. Fig. 5 illustrates the
changes of overall MRR scores for the six code

Figure 5: Changes of overall MRR after applying each
reranker in sequential reranking.

search models after applying each reranker using
sequential reranking in the default order. The hor-
izontal axis labels (from left to right) show the
order of rerankers applied. We can observe that
MRR scores of CodeBERT, DeepCS and CQIL
gradually increase as more rerankers are applied.
Eventually, their overall performance after debias-
ing gets significantly improved compared to their
original performance. For CoCLR, UniXCoder
and GraphCodeBERT which have achieved high
MRR scores before debiasing, applying multiple
rerankers slightly enhances or does not negatively
affect their overall performance. Overall, after ap-
plying seven rerankers, the performance of CoCLR,
UniXCoder and GraphCodeBERT gets enhanced.
We can observe a similar trend when using paral-
lel reranking. In conclusion, the more rerankers
are applied, the better overall code search perfor-
mance the code search model can achieve. In other
words, each reranker indeed contributes to the im-
provement of the quality of code search results.

Analysis 4: Impacts of Reranker Order in Se-
quential Reranking. Since sequential reranking
has various possible order of rerankers, we ana-



Figure 6: Sequential reranking in different order.

Table 4: MRR for different hyper-parameters.

Method
M S N

1 3 5 1 3 5 10 15 20

CQIL 0.380 0.329 0.348 0.384 0.380 0.355 0.380 0.380 0.376
CodeBERT 0.569 0.537 0.504 0.572 0.569 0.552 0.569 0.569 0.569

GraphCodeBERT 0.695 0.673 0.660 0.696 0.695 0.690 0.695 0.695 0.695

lyze the impact of reranking order. In addition to
the default order, we report the debiasing perfor-
mance on CodeBERT using sequential reranking
with three other orders: order 1 (biases 1, 6, 4, 5,
2, 7, 3), order 2 (bases 6, 2, 4, 7, 3, 5, 1) and order
3 (biases 4, 6, 2, 1, 5, 3, 7). Fig. 6 demonstrates
the performance changes after each reranker is ap-
plied in the three order. The horizontal axis labels
(from left to right) show rerankers in the applied
order. Similar to the observation in Analysis 3, we
can see that adding more rerankers help improve
the MRR score. And the intermediate debiasing
results are slightly different using three different
order. But the different order does not affect the
final debiasing result too much.

Analysis 5: Impacts of Hyper-Parameters. We
further analyze the impacts of hyper-parameters.
Tab. 4 provides the debiasing results of CQIL,
CodeBERT and GraphCodeBERT using different
hyper-parameters. Each of the MRR score in the
table is obtained by changing one hyper-parameter
while keeping the other two hyper-parameters the
same as the best ones found in hyper-parameter
search. From the result, we can conclude that
hyper-parameters do not affect results too much.
We provide the analysis as follows:
• M indicates how many top-M similar queries

in the training set are adopted. We believe the
top-1 similar query already provides a hint for
our method, and including more similar queries
do not bring more information. Hence, changing
M does not affect the results too much.

• N% represents the percentage of chosen train-
ing search cases with the highest MRR scores.
Since the training set of CoSQA data contains
14K query-code pairs, changing N% in {10%,
15%, 20%} results in 1,400, 2,100 and 2,800

retrieved cases, respectively. The difference be-
tween the numbers of retrieved cases is not large,
compared to the total dataset with 21K query-
code pairs.

• S indicates the number of clusters after perform-
ing kmeans on these N% cases. We find that
small values of S bring relatively robust and
good performance of debiasing, as reported in
Tab. 4. Therefore, we suggest that users set S
to a small value. If we set S to a much larger
number (e.g., 100, 500, 1,000), the performance
becomes inconsistent, and we suspect that di-
viding retrieved cases into many small clusters
cannot help find case patterns. Instead, many
small clusters bring the noise. Hence, we do not
suggest that users set S to a large value.

Analysis 6: Human Evaluation. We also conduct
human evaluation for assessing the quality of de-
biasing. We randomly pick 200 queries from the
test set for human evaluation. We choose CQIL as
a representation of code search models and use it
in human evaluation. We use our debiasing frame-
work to reduce code search biases in the corre-
sponding results of CQIL for the 200 queries. We
recruit four master students majoring in computer
science to check the quality of debiasing manually.
For each query, we provide the students with two
lists. One is the original top-10 search results from
CQIL, and the other is the top-10 list after debias-
ing. The lists for each query are shown in random
order. Students are asked to choose which top-10
list is better, and they can also indicate that the two
lists are roughly of the same quality. From the re-
sults of human evaluation, we find that, for 71.5%
queries, lists after debiasing are assessed as better
ones. For 19.5% queries, the original list and the
reranked list are estimated as having similar quality.
For the remaining 9% queries, debiasing degrades
the quality of the search list. The human evaluation
results illustrate that our debiasing method indeed
improves the quality of the code search for most
queries. The materials of human evaluation are
included in our provided repository.

6 Conclusion

In this paper, we reveal the existence of code search
biases. We design a general debiasing framework
that can be easily plugged into existing search mod-
els. In the future, we will explore pre-processing
and in-processing methods to improve our frame-
work and better mitigate code search biases.



Limitations

This work may have some limitations:
• Data: When we submitted this manuscript, only

one real code search dataset CoSQA was pub-
licly available. Other datasets in the literature
do not have real search queries, and they use
code documents to simulate queries. However,
code documents and queries have different text
styles (i.e., length). Hence, we only study code
search bias based on the real data in CoSQA. To
overcome this limitation, we are constructing an-
other dataset containing real code search queries
and will release it for future study.

• Language: Queries and code snippets in
CoSQA are written in English and Python, re-
spectively. It is unclear whether our analysis
results hold for queries written in other natural
languages (e.g., French and Chinese). As the
causes of code search biases analyzed in this
work should be common across different pro-
gramming languages (e.g., Java and Go), we
expect that code search in other programming
languages also suffers from the biases studied
in this paper. We leave the study of the impacts
of different natural languages and programming
languages on code search bias as future work.
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