
   

  

   

   
 

   

   

 

   

   160 Int. J. Data Mining and Bioinformatics, Vol. 24, No. 2, 2020    
  

   Copyright © 2020 Inderscience Enterprises Ltd. 
 

   

   
 

   

   

 

   

       
 

Drug target interaction prediction via multi-task  
co-attention 

Yuyou Weng, Xinyi Liu, Hui Li and  
Chen Lin* 
Department of Computer Science, 
Xiamen University, 
Xiamen, Fujian, China 
Email: yuyouweng@stu.xmu.edu.cn 
Email: xinyiliu@stu.xmu.edu.cn 
Email: hui@xmu.edu.cn 
Email: chenlin@xmu.edu.cn 
*Corresponding author 

Yun Liang 
Department of Information, 
South China Agricultural University, 
Guangzhou, Guangdong Province, China 
Email: sdliangyun@163.com 

Abstract: Drug-Target Interaction (DTI) prediction is a key step in drug 
discovery and drug repurposing. A variety of machine learning models are 
considered to be effective means of predicting DTI. Most current studies regard 
DTI prediction as a classification task (that is, negative or positive labels are 
applied to indicate the intensity of interaction) or regression tasks (numerical 
value is used to measure detailed DTI). In this article, we explore how to 
balance bias and variance through a multi-task learning framework. Because 
the classifier is more likely to produce higher bias, and the regression models 
are more prone to create a significant variance and overfit the training data. We 
propose a novel model, named Multi-DTI, that can predict the precise value 
and determine the correct labels of positive or negative interactions. Besides, 
these two tasks are performed with similar feature representations of CNN, 
which is adopted with a co-attention mechanism. Detailed experiments show 
that Multi-DTI is superior to state-of-the-art methods. 
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1 Introduction 

Drug-Target Interaction (DTI) prediction has played a vital role in drug repurposing and 
drug discovery. Identifying the biological principle of potential intervention goals can 
enable efficient drug development. It is environment-friendly and superb for drug 
development to identify the organic starting origin of a disease, and the manageable 
ambitions for intervention. Naturally, there has been numerous research for DTI 
prediction in the bioinformatics community (Palma et al., 2014). Mainly, significant 
lookup interest has these days dedicated to computational DTI systems (Pahikkala et al., 
2015; Luo et al., 2016; He et al., 2017; Öztürk et al., 2018; Tsubaki et al., 2018) to 
exchange ordinary biochemical experimental methods. 

Most structures of DTI prediction models primarily based on machine learning 
methods (Öztürk et al., 2018; Tsubaki et al., 2018). The advantages of machine learning 
methods are scalable, time-saving, and labour-efficient. Machine learning-based DTI 
methods even have been extra promising with the growing quantity of publicly on hand 
data. 

The chemical compound sequence of a drug and an amino acid sequence of a protein 
are usually treated as the input of DTI learners. The prediction results are processed and 
generated from extracted feature representations. Existing DTI prediction methods 
typically cope with one project only, i.e., precise numerical output values to measure the 
interaction (He et al., 2017; Öztürk et al., 2018), or output binary labels for positive or  
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negative signals (Tsubaki et al., 2018; Ni et al., 2018). The former models cope with 
numerical data to implement a regression task. And the latter performs a classification 
task with categorical data. From the view of multi-task learning, both the two kinds of 
DTI prediction methods only achieve a single task. 

For most present multi-task DTI prediction methods, the problem needs to solve is 
the trade-off between bias and variance. Besides, numerical values tend to optimise with 
regression models. The numerical values often lead to an over-fitting result, so we will 
perhaps stumble upon significant variance. On the other hand, as a result of lacking 
numerical analysis with fine grain, classifiers can find classification segmentations. Thus, 
there may be high bias predicted on test data, which don’t have observed labels. We 
consider that the DTI prediction models’ assessment metrics are now and then 
conflicting; the trade-off between bias and variance is more and more severe. The 
generally comparison metrics is adopted to measure the performance of DTI prediction 
models, such as Area Under the Receiver Operating Characteristic (AUROC) curve and 
Mean Square Error (MSE). We can easily find that a DTI prediction classifier is probably 
to do better on metrics of classification, like AUROC (He et al., 2017), but on regression 
metrics, such as MSE (Öztürk et al., 2018), its performance may be poorly. 

This paper is an extension of our previous work (Weng et al., 2019). In this paper, a 
DTI prediction model is proposed, which predicts the precise values of strength for DTI 
and determines the most probable boundary of positive or negative interactions.  
The balance between bias and variance are explored through a multi-task studying 
framework. With the rigorous experiment, we figure out that the overall performance of 
the DTI prediction with the aid of combining the two tasks can increase in phrases of a 
variety of well-known comparison metrics, like MSE, BCE, and AUROC. 

The multi-task in the proposed DTI model, including regression and classification 
tasks, are both performed on a shared feature representations network. Previous systems 
use hand-crafted feature representations, e.g., many sorts of handmade features are mixed 
in He et al. (2017), consisting of PageRank ratings on homogeneous networks, 
occurrence information of drugs and targets, and so on. Different from them, Multi-DTI 
is expertise-driven. There has been a rapid development in feature representation in 
various fields nowadays, resulting from the latest methods of deep neural networks 
(Öztürk et al., 2018). In deep neural networks, the task-specific feature representation is 
studied and optimised all through the training process. To extract feature representation, 
CNN (Öztürk et al., 2018), GNN (Tsubaki et al., 2018) and GCN (Nguyen et al., 2019) 
are adopted in the researches of DTI prediction methods But these deep learning methods 
also have a shortage. For example, in terms of finding long-distance dependencies, it is 
hard for CNN and RNN to see the relationships between drug sequences and target 
sequences. 

In this paper, a co-attention mechanism applies to CNN blocks to enhance the 
relationship between drug sequence and target sequence. We encode the long-distance 
dependencies of drug sequences and target sequences by way of inserting the influence of 
attention into elements in the corresponding sequence. The attention mechanism requires 
considerably much less time to train than CNN or RNN. Furthermore, the drug sequence 
is attended to the generation process of the target sequence with a co-attention 
mechanism; at the same time, the drug sequence is also influenced by the target sequence 
concurrently. As an extension of our previous work (Weng et al., 2019), we evaluate our 
model in another new metric, CI and 2

mr . 
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Generally speaking, our contributions to this work are summarised in the following 
two terms. (1) A new DTI model is proposed to perform multi-task. It can predict the 
numerical strength and binary interaction classification of DTI. (2) We make use of a 
novel co-attention into deep learning neural networks for representing drug/target 
sequences. To validate our assumption, we do enormous experiments on the proposed 
DTI model and prove that it performs better than state-of-the-art methods. 

The structure of the paper is listed as follows. In Section 2, we shortly overview the 
related work. The framework of our DTI prediction model is introduced in Section 3. In 
Section 4, we present the experimental results and analyse the innovative effects. Finally, 
we make a conclusion to this work in Section 5. 

2 Related work 

Related works are briefly reviewed with two lines as follows. 

2.1 DTI prediction 

 For drug discovery and design, DTI is crucial. Because it is exceptionally highly-priced 
and time-consuming to use experimental biochemical strategies for DTI identification, 
computational DTI prediction techniques have acquired developing recognition in 
literature. To predict DTIs, there are two main traditional computational strategies called 
ligand-based methods (Keiser et al., 2007) and molecule docking methods (Cheng et al., 
2007). When goal proteins have little binding ligands, the first strategies will be useless. 
Contrastly, when 3D buildings of goal proteins are no longer available, the second 
technique will be computationally highly-priced and unable to provide correct 
predictions (Chen et al., 2016). Thus, to infer DTI, researchers have come up with a lot of 
machine learning-based techniques. There are two most important kinds of DTI learners. 

One kind equals DTI prediction with binary classification tasks in which we mark the 
known DTIs as positive and unknown DTIs as negative (Ding et al., 2013) or without a 
label (i.e., PU Learning) (Peng et al., 2017). The latest work (Ni et al., 2018) defines 
unknown DTIs as lacking labels. Like Random Forest (RF) (Pahikkala et al., 2015;  
Li et al., 2015) and Support Vector Machine (SVM) (Shar et al., 2016), researchers also 
adopt traditional regression models. The other kind tries to get a numerical value named 
drug-binding affinity. Gradient boosting method (He et al., 2017) and deep neural 
networks are included in the regression models. Deep neural networks consider 
regression loss and are used most recently (Guney et al., 2016; Zhang et al., 2017). 

2.2 Representation learning 

Machine learning-based techniques include regression methods and classification 
methods. They function on drugs and targets’ feature representations. Previously, the 
area expertise largely influences the feature representations, e.g., molecule docking and 
descriptors (Cheng et al., 2007; Zhang et al., 2017). Benefit from the deep learning’s 
super success, for drug and target representations, some network descriptors have been 
used. Most of them concentrate on drug-target pairs to extract their topological similarity. 
For example, DBN (Wen et al., 2017) builds a stack of Restricted Boltzmann Machine 
(RBM) (Wang and Zeng, 2013), DeepWalk (Zong et al., 2017) computes similarities in a 
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linked tripartite network. Convolutional Neural Network (CNN) (Krizhevsky et al, 2012, 
2017) is a network building that can perform adequately with grid data, and in lots of 
computer vision tasks, it has been utilised efficiently. Because DTI prediction is also 
relevant to grid-like data, CNN is applied in a range of deep CTI forecast indicators, like 
CNN grading function (Ragoza et al., 2017), DeepDTA (Öztürk et al., 2018), OnionNet 
(Zheng et al., 2019) and so on. Furthermore, DeepCPI (Tsubaki et al., 2018) makes use 
of Graph Neural Network (GNN) (Ying et al., 2018). 

Because of the poor scaling characteristics of CNN and GNN, it is not easy for them 
to grasp long-distance dependencies in the sequence. The self-attention mechanism 
solves this problem by associating a single sequence’s different positions to calculate the 
representation of the same process. The self-attention mechanism produced gratifying 
results when used in lots of natural languages processing models, for example, in 
transformer (Vaswani et al., 2017). About the promotion of self-attention, one way is 
focusing attention jointly on two sequences so that it can turn into the co-attention 
mechanism (Ma et al., 2017). Some co-attention models are coarse-grained, and some are 
fine-grained (Fan et al., 2018). Coarse-grained models utilise the embedding of other data 
as a query to calculate the attention of each input. In this work, we retain drug and 
protein sequences’ topology information by undertaking the co-attention mechanism. 

3 Method 

In this section, a novel model, Multi-DTI, is proposed as a DTI predictor with a multi-
task studying framework. We have introduced some previous work in our recent paper 
(Weng et al., 2019). The multi-task means Multi-DTI aim to perform regression and 
classification tasks at the same time. Multi-DTI is a kind of supervised model, i.e., the 
model is fed with given labels. In DTI prediction, the input of target is amino acid 
sequence, the input for drugs is Simplified Molecular-Input Line-Entry System 
(SMILES) representations of the chemical compound sequences, as well as the 
supervision signals as a value between 0 and 1. In the multi-task setting of Multi-DTI, 
supervision indicators consist of the precise strength value of DTI and the positive or 
negative DTI labels, which is also called numerical values and binary variables. Firstly, 
the process of generating the supervision alert signals is described for the input of Multi-
DTI. Next, the network structure of Multi-DTI is introduced in detail and introduce every 
part of its components, whose structure is similar with our previous work (Weng et al., 
2019). Finally, we set a loss function to mix the regression task and classification task. 

In the paper, lower-case letters are used for indices, and upper-case letters are used 
for functions and scalars; lower-case bold-face letters are used for vectors, while upper-
case bold-face letters are used for matrices. 

Supposed that there are M  drugs and N  targets, which are denoted as 

1[ ,..., ]MD D D  and 1[ ,..., ]NT T T  respectively. We represent their supervision signals 

as M NY  . There are two ways to generate supervision signal Y , which have been 
mentioned in the previous Section 1. To perform a regression task, the supervision signal 

 , 0,i jY   , that is, , ,=i j i jY R , where ,i jR  represents the normalised DTI value. To 

perform a classification task, the supervision signal  , 0,1i jY  , where a positive label of  
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DTI is represent as , = 1i jY , otherwise, , = 0i jY . It is worth mentioning that pairs between 

drugs and targets with unknown interactions are often ignored and didn’t take into 
account. 

We combine the classification and regression tasks to complete the multi-task. 
Therefore, the supervision signals with a given range are constructed in the form of a 
matrix as follows. 

0, =

=
,

max( )

ij

ijij

if R unknown

RY
else

R







 (1) 

It is evident that the real observed DTI values R  are equal to Y  due to the fact they 
point out the strength of DTI. We reset the normalised strength of DTI for multi-task. In 
detail, We reduce each element with the same proportion of R  according to the maximal 
value in R . In the meantime, to mine more information, we mark it as zero if the DTI 
has unknown labels. 

The overview of Multi-DTI is shown as Figure 1, the embeddings of drug and target 
sequence ,i jd t  go with the flow through an embedding layer, a feature representation 

component, and a prediction layer. Multi-DTI is aiming to generate the prediction value 

of îjY . The model parameters of Multi-DTI is given as Q .  ˆ , |ij i jY F d t Q , to 

approximate ijY  with these parameters. 

Figure 1 Network architecture of model multi-DTI 

 

3.1 Embedding layer 

Firstly, we embed integer/label encoding to characterise each data as inputs. For drug 
sequences, we scan about 2000 SMILES sequences, which is collected the Pubchem 
Database. We allocate 64 labels for each element. For example, letters “C”, “N”, “=” is 
allocated with different labels. Each label is represented with a special integer, e.g. “C”:1, 
“=”:22, “N”:3 and so on. The process is similar to our previous work (Weng et al., 2019). 
For example, we transform a label embedding for a drug sequence “CN=C=O”, the result 
is given like below: [ = = ] = [1 3 22 1 22 5]C N C O  

Secondly, an embedding function ( )G   is utilised to change the specific sequence 

into a E -dimensional float vector as feature representation, where V  is the count 
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number of drug label tags. That is, ( ) EG V  , Throughout the whole training process, 

the learning of the embedding function is continued. In order to get separate integer label 
embeddings, we concatenate all integer label embeddings of the same drug sequence in 
rows. For intending operations on CNN, we assemble a matrix for every drug i . Next, 

we will leave out subscript index i  and j  without ambiguity, and D E
inputD   is used 

to represent the input of CNN, where D  is the maximal size of a drug sequence. 
Finally, we perform similar operations for protein sequences. In terms of a target 

sequence, we scan 550,000 protein sequences from UniProt Database. Next, we extract 
25 different labels for each element to get a separate embedding. We encode the target 
sequences with integer label encodings. Then in order to assemble the input of 
CNN T E

inputT  , the encodings are concatenated in rows. 

It is evident that both drug and target sequences have various lengths. We determined 
to select a size limit to create a fixed representation form, i.e., we set D  is the maximum 
length of drugs and T  for targets. The drug sequences which are shorter than D  would 
be filled with zeros, while the part out of range would be cut-off. 

3.2 Feature representation component 

inputD  and inputT  are utilised as input in this component. The CNN networks made up the 

most kernel part of the feature representation component to encode sequential 
information. There are two CNN blocks. One of them is set for drug sequence and 
another for the target sequence. The output of these CNN blocks is CNND  and CNNT . 

Every CNN block is consists of three consecutive 2D-convolutional layers and a max-
pooling layer, which are used to filter data. 

Next, a co-attention mechanism is put behind CNN blocks to cope with CNND  and 

CNNT , respectively, and output ATTD  and ATTT . In intuition, some drugs and unique 

targets affect each other. The underlying assumption of the co-attention mechanism is 
that the attention weights could capture the influence of drugs and targets. 

Specifically, with a given drug vector CNNd  and a target vector CNNt , the drug output 

vector ATTd  is generated in the co-attention layer. Each element in the input of drug 

feature representation CNNd  is multiplied with its corresponding attention weight of 

target feature representation ATTd : 

 ATT CNN CNNd d t   (2) 

where ( )   function is used to calculate the importance of CNNt , which is part of 

attention mechanism. We adopt a single layer feed forward network to get the attention 
weights, which is defined as below.  

   CNN CNNt A W t b      (3) 

where W  and b  represent the matrix of weight parameters and the vector of bias 

parameters of the connected network, respectively. To normalise the attention weights 
parameters, we defined softmax function ( )A  . 
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We also carry out a comparable construction of co-attention on every goal vectors 

CNNt  extracted utilising CNN. In Figure 2, we display the architecture and application of 

the co-attention mechanism. 

Figure 2 Illustration of parallel coarse-grained co-attention 

 

3.3 Prediction layer 

ATTD  and ATTT  are utilised as input in this layer. In the last component, the feature 

representation sequences of drugs and targets have been transformed into new vectors in 
latent space. We utilised the similarity between feature vectors if drugs and targets, 
which is measured to predict the final result, i.e., computing the cosine similarity 
between ATT id  and ATT jt . In the prediction layer, In intuition, The DTI value would be 

higher if its corresponding drug feature representation is more similar to the target feature 

representation. Therefore, we describe the output of îjY  as: 

 ˆ cos ,
T

ATT i ATT j
ij ATT i CNN j

ATT i ATT j

d t
Y ine d t

d t
 


 (4) 

To perform a classification task, Normalised Cross Entropy (NCE) loss (Xue et al., 2017) 

is adopted to be part of final loss function . Given îjY  as the predicted label and ijY  as the 

real label, we describe NCE as: 

   
( , )

ˆ ˆlog 1 log 1ij ij ij ij
i j

NCE Y Y Y Y


       (5) 

It is worth to mention that in case of  0,1ijY  , NCE as equation (5) could be regarded 

as equal to the traditional Binary Cross Entropy. Therefore, the NCE loss function will 
lead to a more definite boundary between positive and negative prediction results. 
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To perform a regression task, we need to use the regression loss function as Mean 
Square Error (MSE). 

 2

1 1

1 ˆ
M N

ij ij
i j

MSE Y Y
M N  

 
   (6) 

where ,M N  means the maximum count number of drugs and targets, respectively. 
Finally, we make a comprehensive consideration to MSE and NCE as the loss 

function of Multi-DTI, which is described as below:  

 = 1Loss MSE NCE      (7) 

where   is a defined parameter that adjusts the mixture proportion of MSE and NCE. 
Discussion: The way to output a high-quality prediction with a given feature space of 

DTI has attracted many research interests. It is crucial to figure out that a multi-layer 
perception has been used in numerous existing researches (Öztürk et al., 2018; Tsubaki  
et al., 2018; Nguyen et al., 2019). In this paper, we use a new idea different from these 
works. Cosine similarity between drug and target feature representation has been used in 
Multi-DTI directly. The advantage of the new idea is easy for learning. Besides, fewer 
parameters of a model could speed up the training process and save more time. 

4 Experiment 

The next lookup questions are studied in this part.  

RQ1: Will the latest techniques work worse than the Multi-DTI model?  

RQ2: Will the result of Multi-DTI is affected by the parameters?1 

4.1 Experimental setup 

To validate our model, the Kinase Inhibitor BioActivity (KIBA) data set2 is exploited. 
DTI strength is an integration of Kd, Ki, and IC50 scores, composing our data set. About 
25% of the labels are positive labels, while the rest are negative labels. The fundamental 
information of the data sets is illustrated in Table 1. To improve the stability and 
robustness of the model, we apply 5-fold cross-validation. 

Table 1 Statistics of the KIBA data set 

 # Number of drugs # Number of targets # Number of drug-target pairs 

KIBA 2008 185 92,706 

For SMILES, we set a size limit of maximal 100 characters, and for protein sequences, 
we set the limit of maximum as 1000 in this experiment. As Öztürk et al. (2018) said, the 
maximum size covers at least 80% of the proteins and 95% of the compounds. We set the 
embedding dimension as = 128E  and use 256 as batch size. Adam is chosen as the 
optimiser, and with the learning rate as 1 5e  , convergence is declared for 200 Epochs. 
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Table 2 Comparison result 

Method Drugs Targets Prediction Loss MSE BCE AUROC AUPR 

PUDTI Descriptor Descriptor Concate Hinge 
loss 

0.201 0.553 0.804 0.278 

DTINet RWR RWR Matrix 
completion 

MSE 0.292 0.794 0.695 0.368 

DeepCPI GNN CNN Concate 
Attention 

BCE 0.197 0.693 0.476 0.250 

DeepDTA CNN CNN Concate 
FFN 

MSE 0.002 0.046 0.814 0.436 

CNN-basic CNN CNN Cosine BCE 0.002 0.043 0.853 0.402 

CNN-Multi CNN CNN Cosine Multi-
task 

0.002 0.041 0.848 0.419 

Multi-DTI CNN 
Attention 

CNN 
Attention 

Cosine Multi-
task 0.002 0.034 0.888 0.424 

4.2 Comparative study 

Multi-DTI model is compared with the baseline models listed as follows: 

1) PUDTI (Peng et al., 2017): an optimisation model based on SVM. It is learned on 
negative labels that are extracted primarily based on positive-unlabelled learning. On 
the basis of on PaDEL-Descriptors of drugs, PAACs and PSSM of targets, We can 
describe every pair of input explicitly. The loss function of PUDTI is the Hinge loss 
function. 

2) DTINet (Luo et al., 2017): a regression model. It uses a given heterogeneous network 
to predict DTI. In the heterogeneous network, numerous information related to drugs 
is integrated. We use Random Walk with Restart (RWR) to extract the feature 
representations. With given drug feature representations P  and target feature 
representations Q , The model can learn the feature space mapping Z  by 

minimising MSE loss function  2ˆminZ Y PZQ . 

3) DeepCPI (Tsubaki et al., 2018): an end-to-end deep learning model. A Graph Neural 
Network (GNN) block can learn drug representation, and with a CNN block, it can 
learn the protein representation. On the basis of the concatenation of drug and 
protein feature representations, a neural attention mechanism is adopted by DeepCPI 
to predict DTI. The loss function of DeepCPI is BCE. 

4) DeepDTA (Öztürk et al., 2018): a deep neural architecture with two separate CNN 
modules, which can study the feature representations from drugs and targets, 
respectively. To predict the value of DTI, a fully-connected feed-forward layer is 
performed by DeepDTA on the concatenation of drug and protein representations. 
The loss function of it is MSE. 

To validate the influence of co-attention and multi-task learning, we made a 
comparison between Multi-DTI and its variations. 
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5) CNN-basic: a Multi-DTI model’s variant. It uses primary CNN modules on drug and 
target sequences and then calculates their cosine similarity. The loss function of it is 
BCE. 

6) CNN-Multi: another Multi-DTI model’s variant, which utilises multi-task loss  
(i.e., equation (7)) on CNN blocks. 

We consider the methods in metrics as MSE, BCE, AUROC, and AUPR. 
The following conclusions can be obtained from Table 2. (1) Multi-DTI gets the best 

result when we consider MSE, BCE and AUROC. It performs comparably on AUPR, 
too. (2) State-of-the-art methods can only cope with a single task. For example, DeepCPI 
defines its loss function as a classification, so when we consider BCE, AUROC, and 
AUPR metrics, it has the best performance. However, its performance in MSE is poor. 
Contrarily, Multi-DTI performs nicely in the comparison metrics because they undertake 
multi-task loss. (3) The prediction performance can be improved by the attention 
mechanism. As we can see, the BCE of CNN-Multi is increased by about 17% than 
Multi-DTI. (4) Multi-DTI achieves the second-best result, and DeepDTA obtains the best 
result on AUPR. The likely reason may be the trade-off of loss function between MSE 
and BCE. In the next subsection, we will find out about the relationship between   and 
metrics. 

4.3 Effect of parameters 

Here, we continue to explore RQ2 and learn what effects will be caused by the 
parameters changing. 

Firstly, we study the influence of the proportion parameter of  . In our loss function, 
  controls the proportion of MSE. We set ={0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0} , 

and the performance of MSE, BCE, AUROC and AUPR are presented in Figure 3. 

Figure 3 Performance with different values of . (a) MSE (b) BCE (c) AUROC (d) AUPR  
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Figure 3 Performance with different values of . (a) MSE (b) BCE (c) AUROC (d) AUPR 
(continued) 
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From Figure 3, we find that as  increases, the MSE and AUROC result generally 
becoming worse and worse. Even the Multi-DTI model only performs a regression task, 
the MSE and AUROC performance getting the worst point When = 1.0 . BCE’s trend 
is non-monotonic, so is AUPR. The highest AUPR and lowest BCE is obtained when 

= 0.6 . Therefore, = 0.6  is regarded as the most suitable value of. 
Next, we find out what effects will be caused when batch size changing. Batch size is 

a parameter which is very critical in the process of training. From 64 to 4096, several 
different batch sizes are set to test. We plot the curve of performance of MSE, BCE, 
AUROC, and AUPR at each epoch. 

As illustrated in Figure 4, we can discover that there is no distinct tendency in MSE 
and BCE. However, a bigger batch size leads to slower convergence in AUROC and 
AUPR. When batch size is 256, the model quickly converges to the best AUROC and 
AUPR results. 

Figure 4 Convergence of Multi-DTI with different batch size. (a) MSE (b) BCE (c) AUROC  
(d) AUPR  
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Figure 4 Convergence of Multi-DTI with different batch size. (a) MSE (b) BCE (c) AUROC  
(d) AUPR (continued) 
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(d) 

4.4 Alternative metrics 

Besides MSE, BCE, AUROC, and AUPR, some new metrics, CI and 2
mr , are introduced 

to measure the performance of Multi-DTI. 
CI, also called concordance index, is used to measure the prediction of models. We 

can calculate the metric by 

 
>

1
ˆ ˆ= i j

y yi j

CI H y y
N

  (8) 
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where ˆiy  and ˆ jy  is corresponding predicted value of iy  and jy  respectively. And ( )H x  

is a step function as follow:  

 
1, > ;

= 0.5, = ;

0, <

if a b

H a b if a b

if a b


 



 (9) 

2
mr  is used to characterise the quality of a fit through changes in the data. The 

computation of 2
mr  is shown as follow.  

 2 2 2 2
0= 1mr r r r    (10) 

 where 2r  is the squared correlation coefficient values between the observed real data 
and predicted values with intercept, while 2

0r  means the squared correlation coefficient 

values without intercept. 
A more significant CI and 2

mr  both stand for a better performance of the model. We 

plot the metrics of Multi-DTI in Figure 5. 

Figure 5 The performance of Multi-DTI in different metrics 

 

5 Conclusion 

Multi-DTI is proposed as a new DTI predictor, which aims to solve the trade-off between 
bias and variance. The feature representations is based on a shared network. The model 
learned about drug and target feature representations and made an innovation by adding a 
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co-attention mechanism into traditional CNN blocks. Besides, the model primarily based 
on multi-task learning, which tries to perform both the regression and classification loss. 
With 5-fold cross-validation experiments, we prove that Multi-DTI performs better than 
state-of-the-art DTI prediction methods. In our future work, we are looking forward to 
improving the prediction result of DTI, in terms of multi-task, multi-view, and multi-
modality learning. 
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