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ABSTRACT
Recommender systems have become de facto tools for suggesting
items that are of potential interest to users. Predicting a user’s rat-
ing on an item is the fundamental recommendation task. Tradi-
tional methods that generate predictions by analyzing the user-item
rating matrix perform poorly when the matrix is sparse. Recent ap-
proaches use data from social networks to improve accuracy. How-
ever, most of the social-network based recommender systems only
consider direct friendships and they are less effective when the tar-
geted user has few social connections. In this paper, we propose
two alternative models that incorporate the overlapping commu-
nity regularization into the matrix factorization framework. Our
empirical study on four real datasets shows that our approaches
outperform the state-of-the-art algorithms in both traditional and
social-network based recommender systems regarding both cold-
start users and normal users.

1. INTRODUCTION
Recommender systems have become essential tools for suggest-

ing items of potential interest to users and they have successfully
been deployed in the industry, with applications such as movie rec-
ommendations (Netflix), product recommendations (Amazon), and
music recommendations (Last.fm).

The various definitions of the recommendation problem all boil
down to predicting the ratings of a target user on items (e.g., movies)
that the user has not rated before (e.g., unwatched movies). Specifi-
cally, consider a set ofm users and a set of n items in a rating-based
recommender system: each user u can rate any item by giving it a
score. Given a target user u, for each item i that u has not rated,
the system predicts the rating, based on the existing ratings of other
users. Then, the unrated items with high predicted rating scores are
offered as suggestions to u.

Traditional recommender systems [9, 3, 11, 24, 10, 5, 26, 31, 14]
are effective for target users who have rated many items, since it is
easy to find other users that have rated these items. However, they
perform poorly for cold-start users who have very few ratings; in
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this case, it becomes hard to find similar users to the target user, in
order to generate recommendations based on their ratings.

The increasing popularity of online social networks offer chances
to improve the accuracy of rating predictions; as sociologists pos-
tulate, people tend to relate to people with similar preferences and
people that influence each other become more similar [27]. [2] also
confirm that a social network provides an independent source of in-
formation which can be exploited to improve the quality of rating
predictions. Based on the rationale that a user’s interest is similar to
or influenced by her/his friends, several social-based recommender
systems [17, 16, 7, 18, 15, 30, 12] have recently been proposed. Ex-
periments demonstrate that making recommendations based on the
ratings of the users socially connected to the target user improves
traditional techniques, especially when the user-item rating matrix
is sparse. However, in the literature, the most effective social-based
recommenders systems [7, 18, 30] only consider direct friendships
in the network. As shown in our empirical study, they become less
effective for target users who have few ratings (rating-cold-start
users) or few social connections (social-cold-start users).

Figure 1: Communities in Shelfari
In this paper, we exploit information about the communities formed

by users in social networks, to improve the recommendation accu-
racy. Social network users tend to establish relationships with peo-
ple who share similar interests with them. For example, Figure 1 il-
lustrates user communities in a book recommender system1, based
on different topics. The members in the same community usually
share characteristics and can be an alternative of direct friends for
social recommender systems. Aiming at solving the problems of
social-based recommenders discussed in the previous paragraph,
we propose two models that incorporate the overlapping commu-
nity regularization into the matrix factorization framework differ-
ently. The communities are detected based on the social network
structure; a user may belong to multiple communities with differ-
1http://www.shelfari.com
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Figure 2: An Example of Social Recommender System

ent interests. One of our models (MFC) ensures that the distance
between the latent feature vectors of users u and u′ is low if u and
u′ belong to the same community c. Our other model (MFC+)
forces the user latent feature vectors to be close to those of her/his
communities. Empirical studies on four real datasets show that our
approaches outperform the state-of-the-art traditional and social-
based recommenders by 6%-42% for general users. Moreover, we
put emphasis on cold-start users. While the problem of rating-cold-
start users is studied in previous research on social recommender
systems, social-cold-start users are ignored by previous work. Our
methods consider both cases and beat baselines by 7%-32% for
rating-cold-start users and 4%-37% for social-cold-start users.

The rest of the paper is organized as follows. Section 2 formally
defines the problem. Section 3 reviews major rating prediction
approaches in the literature. Section 4 introduces our MFC and
MFC+ models. The results of our empirical study are reported in
Section 5. We conclude in Section 6.

2. PROBLEM DEFINITION
In a traditional ratings-based recommender system, there are m

users {u1, · · ·um} and n items {v1, · · · vn}. The users’ ratings on
items form a m× n rating matrix R = [rij ] where rij is the rating
of user ui on item vj . Typically, 5-scale or 10-scale rating systems
are used.

In a social recommender system, we have a social network graph
where each node represents a user and edges model the social rela-
tionships between users (e.g., friendship or influence). The social
graph can also be modeled by am×m adjacency matrix S = [sij ],
where sij represents the similarity between users ui and uj or how
much user ui trusts user uj . Figure 2 shows a toy example of a so-
cial recommender system with 5 users and 5 items. Figure 2(a) is
the social network graph and Figure 2(b) is the corresponding adja-
cency matrix S = [sij ] where a positive sij indicates a social edge
between user ui and user uj . Figure 2(c) is an exemplary user-
item rating matrix where questionmarks are unknown ratings. Fig-
ure 2(d) illustrates the possible output of the social recommender
system where any unknown ratings are predicted.

The basic task of a social recommender is as follows: given the
user-item rating matrix R = [rij ] and the adjacency matrix S =
[sij ], predict an unknown rating rij for user ui on item vj .

3. RELATED WORK
This section reviews important rating prediction approaches in

traditional and social-based recommender systems.

3.1 Traditional Approaches
One of the most commonly-used and successfully-deployed rat-

ing prediction approaches in traditional recommender systems is

collaborative filtering (CF). Two classes of CF methods are widely
used. Memory-based methods predict ratings for the target user
based on the ratings of similar users [9] or the computed infor-
mation of items similar to those chosen by the target user [3, 24].
Model-based methods make predictions using a trained compact
model from the user-item rating matrix. Various training models
have been investigated, such as the clustering model [10], the as-
pect models [5, 26], the Bayesian hierarchical model [31], and the
ranking model [14]. None of these traditional approaches take so-
cial network data into account.

3.2 Social-based Approaches
Most of the social-based approaches [17, 16, 7, 18, 15, 30] fol-

low the matrix factorization (MF) framework [11, 23], due to its
effectiveness and efficiency in dealing with large user-item rating
matrices. Let R be an m × n matrix with the ratings of m users
on n items. The basic MF method shown in Figure 3(a) predicts
the rating matrix R by multiplying a d-rank user-specific matrix
U ∈ Rd×m with a d-rank item-specific matrix V ∈ Rd×n, i.e.,
R ≈ UTV , where d � min(m,n). Column vectors Ui and Vi
represent the d-dimensional latent feature vectors of user ui and
item vj , respectively. The latent vectors can be learnt by minimiz-
ing the following sum-of-squared-errors objective function with
two quadratic regularization terms to avoid overfitting:

1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λU
2
‖U‖2F +

λV
2
‖V ‖2F ,

where ‖·‖2F denotes the Frobenius norm and IRij is equal to 1 if user
ui rated item vj and equal to 0 otherwise. Gradient descent can be
applied to find a local minimum. Having latent feature vectors Ui
and Vj , the unknown rating on item vj for user ui is predicted as
R̂ij = UTi Vj .

SoRec [17] extends the basic MF model by integrating the social
network, as shown in Figure 3(b). T is the matrix representation of
the social network; ITik=1 if users ui and uk are friends and ITik=0
otherwise. Matrix T is factorized into a user-specific matrix U and
a factor-specific matrix W . The latent feature vectors of users are
learnt based on both the rating and social network matrices. The
objective function to be minimized is:

1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λT
2

m∑
i=1

m∑
k=1

ITik(Tik − UTi Wk)2

+
λU
2
‖U‖2F +

λV
2
‖V ‖2F +

λW
2
‖W‖2F .

Later, as shown in Figure 3(c), STE [16] modified the basic MF
model so that each rating Rij in the user-item matrix R reflects (i)
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Figure 3: Matrix Factorization (MF) Based Models

user ui’s favor on item vj and (ii) the favors of user ui’s friends
(N(i) indicates ui’s friends) on item vj . The objective function is:

1

2

m∑
i=1

n∑
j=1

IRij

(
Rij −

(
αUTi Vj + (1− α)

∑
uk∈N(i)

TikU
T
k Vj

))2
+
λU
2
‖U‖2F +

λV
2
‖V ‖2F ,

where T is the matrix representation of the social network, N(i) is
the friend set of user ui, and α controls the effect of friends on the
rating estimation.

A recent model, SocialMF [7], learns the latent feature vectors of
users based on the latent feature vectors of their friends, as shown in
Figure 3(d). SR model [18] improves SocialMF by treating friends
with dissimilar tastes differently, so as to consider the diversity of
each user’s friends. SR’s objective function is:

1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λU
2
‖U‖2F +

λV
2
‖V ‖2F

+
β

2

m∑
i=1

∑
uk∈N(i)

Sik‖Ui − Uk‖2F ,

where Sik is the similarity between users ui and his/her friend uk.
Concerning the social-cold-start users who have few friends in the
social network, in the SR+ model [15], the latent feature vectors
of users depend on the latent feature vectors of both their friends
and the users with high similarities. However, SR+ requires an a
priori similarity threshold. The CircleCon model [30] refines So-
cialMF by considering category-specific friends and the intuition
is that a user may trust different subsets of users regarding differ-
ent domains. GSBM [8] extends the mixed membership stochastic
blockmodel [1] to capture both the social relations and the rating
behavior for groups of users and items. However, its rating predic-
tion accuracy is worse than that of SocialMF.

PSLF [25] is a unified probabilistic model for social recommen-
dation. It extracts the social factor vectors of users from the so-
cial network based on the mixture membership stochastic block-
model [1] and integrates them into the user-item space.

In summary, most of the social-based approaches only consider
direct friendships in the social network. They become less effective
when a user has few social connections.

4. OVERLAPPING COMMUNITY REGULAR-
IZATION

We propose two models, MFC and MFC+, that incorporate the
overlapping community information as regularization terms into
the widely used MF framework. We first introduce the concept of
overlapping community in Section 4.1. The two models MFC and

MFC+ are presented in Sections 4.2 and 4.3. The time complexity
is analyzed in Sections 4.4.

4.1 Overlapping Community
Community structures are quite common in social networks. The

users in the same community share characteristics (e.g., they may
have common locations, interests, occupations, etc.). In some real
applications (e.g., Douban which is an online recommender system
for book, movie and music and Shelfari which is a recommender
system for book), there are some manually formed communities
which represents members’ interests. It is natural that a user may
belong to multiple communities and overlapping communities can
represent the users’ diverse characteristics. For example, a user
may join a group for mystery novels and a group for historical nov-
els at the same time.

We derive the rating vector of a community as the mean vector
of the rating vectors of all the users in the community. We adopt the
widely used Pearson Correlation Coefficient (PCC) [22] to measure
the similarity Sij between two users based on their rating vectors.
The interest Zih of a user ui on community ch is the PCC between
the rating vectors of user ui and community ch. We map PCC into
range [0, 1] using function f(x) = (x+ 1)/2. PCC is defined as:

simij =

∑
p∈P (xip − xi)(xjp − xj)√∑

p∈P (xip − xi)2
√∑

p∈P (xjp − xj)2
,

where P is the intersection of the two vectors.

4.2 MFC Model
The SR model [18, 15] improves ratings prediction by imposing

similarity constraints between users and their friends. Given the
social network, model SR can be easily extended by considering
all the members in the community where the target user belongs to.
However, taking the individual influence based on the user-to-user
similarity constraints may cause overfitting.

ih i1

ih ik

i1 i1

i1 ik

1 k
U
i1

1 k
U
ih

Figure 4: MFC Model
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Our proposed MFC model, shown in Figure 4, injects commu-
nity interest constraints into the SR model. Our motivation is that
users who belong to different communities should be treated differ-
ently, as opposed to the SR model, which treats them equally. If the
target user is more interested in music than sports, users belonging
to the music community should be weighed higher. In MFC, the
latent feature vector of user ui depends on the users belonging to
the same communities as ui. The regularization term in MFC con-
siders both the user similarity Sik and the community interest Zih:

λZ
2

m∑
i=1

l∑
h=1

IZihZih
∑

uw∈MU
ih

Siw‖ Ui − Uw ‖2F ,

where MU
ih contains the users in the same community ch as user

ui, IZih equals 1 if user ui belongs to ch and equals 0 otherwise.
The objective function E to be minimized is

E =
1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λU
2
‖U‖2F +

λV
2
‖V ‖2F

+
λZ
2

m∑
i=1

l∑
h=1

IZihZih
∑

uw∈MU
ih

Siw‖ Ui − Uw ‖2F .

A local minimum of the above function E can be found by per-
forming gradient descent in Ui and Vj :

∂E

∂Ui
=

n∑
j=1

IRij(U
T
i Vj −Rij)Vj + λUUi

+λZ

l∑
h=1

IZihZih
∑

uw∈MU
ih

Siw(Ui − Uw)

−λZ
∑
up∈G

∑
ch∈F

ZphSpi(Up − Ui),

∂E

∂Vj
=

m∑
i=1

IRij(U
T
i Vj −Rij)Ui + λV Vj ,

where G = {up|∃h, ui ∈ MU
ph & IZph = 1} and F = {ch|ui ∈

MU
ph & IZph = 1}.

4.3 MFC+ Model
In real life, it is common for users to seek advice from members

in different groups and summarize suggestions as an overall view
of a group. For example, John, who joined two groups Comedy
and Romance in a social-based movie recommender system, wants
to watch a movie on the weekend. After reading comments, he
chooses Four Weddings and a Funeral with high average ratings in
these two groups.

Model MFC+, shown in Figure 5, learns the latent feature vec-
tor of the target user ui based on the latent feature vectors of the
communities where ui belongs. The latent feature vector Ch of
community ch is defined based on the latent feature vectors of the
users that belong to ch and the interests of these users for ch. A
user with high interest in community ch contributes more to the la-
tent feature vector of ch. Also, each user’s latent feature vector can
contribute to multiple community latent feature vectors. The latent
feature vector of a community is calculated as:

Ch =

∑
uw∈MC

h
ZwhUw∑

uw∈MC
h
Zwh

,

j i

ij
h

ik

1i1

1

k

1h

kh

1

k

11

k1

i 1 h

1 k
C
1

1 k
C
h

, ,

Figure 5: MFC+ Model

where MC
h contains the users belonging to community ch. Note

that Ch is a latent feature vector, while the community vector we
used in Section 4.1 to calculate Z is a ratings vector. The overlap-
ping community-based regularization term in the MFC+ model is
λZ
2

∑m
i=1

∑l
h=1 I

Z
ihZih‖ Ui − Ch ‖2F . The objective function E

in MFC+ is:

E =
1

2

m∑
i=1

n∑
j=1

IRij(Rij − UTi Vj)2 +
λU
2
‖U‖2F +

λV
2
‖V ‖2F

+
λZ
2

m∑
i=1

l∑
h=1

IZihZih

∥∥∥Ui − ∑uw∈MC
h
ZwhUw∑

uw∈MC
h
Zwh

∥∥∥2
F
.

A local minimum of objective function E can be found by per-
forming gradient descent in Ui and Vj :

∂E

∂Ui
=

n∑
j=1

IRij(U
T
i Vj −Rij)Vj + λUUi

+λZ

l∑
h=1

IZihZih
(
Ui −

∑
uw∈MC

h
ZwhUw∑

uw∈MC
h
Zwh

)
−λZ

∑
up∈G

∑
ch∈F

(
ZphZih∑
uw∈MC

h
Zwh

(
Up−

∑
uw∈MC

h
ZwhUw∑

uw∈MC
h
Zwh

))
,

∂E

∂Vj
=

m∑
i=1

IRij(U
T
i Vj −Rij)Ui + λV Vj ,

where G = {up|∃h, ui ∈ MC
h & IZph = 1} and F = {ch|ui ∈

MC
h & IZph = 1}.

4.4 Time Complexity
Let d be the dimensionality of the latent space, m be the number

of users, n be the number of items, r̄ be the average number of rat-
ings per user gave, f̄ be the average number of communities where
to each user belongs, and w̄ be the average number of members per
community. The complexity of evaluating the objective function
is O(r̄md + f̄ w̄md), while the cost of computing the gradients is
O(r̄nd+ f̄ w̄md). These costs are linear with respect to r̄ and f̄ w̄.
Since the rating matrix is very sparse, r̄ is relatively small. Accord-
ing to the analysis of real networks including information network
(Wikipedia), content-sharing network (Flickr) and social networks
(Facebook, Google+ and Twitter) [29], f̄ and w̄ are also small.

5. EMPIRICAL STUDY
We conducted an empirical study using four public datasets, Yelp,

Flixster, Douban and Dianping, to evaluate MFC and MFC+ com-
pared to the state-of-the-art approaches.
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Figure 6: Distributions of Four Datasets

5.1 Data
Datasets Yelp, Flixster, Douban are widely used in previous stud-

ies of social recommender systems. We crawled Dianping from a
social recommender system.

• Yelp2 is provided by the fourth round of the Yelp Dataset
Challenge. It is a local business recommendation platform
with a social networking feature.

• Flixster3 [7] is a social networking service where users can
rate movies.

• Douban4 [18] is an online community service, providing rec-
ommendations for movies, books and music.

• Dianping was crawled from the real social network-based
recommender system Dianping5, which is a leading local
business search and review platform in China. The dataset
contains business items in Shanghai, a social network of users,
and the ratings from April 2003 to November 2013.

General statistics of the four datasets are shown in Table 1. Rat-
ing sparsity is defined as 1 − |R| /mn and edge sparsity is calcu-
lated as 1− 2 |E| /[m(m− 1)], where |R| is the number of ratings
and |E| is the number of social connections. In each dataset, every
user has at least one friend and has rated at least one item. Each
item has at least one rating. Figure 6 illustrates the relationship
between the number of friends and the number of ratings per user
in the four datasets and the intensity of color shows the density
of users. In general, more than half of the users have few ratings
and few social connections. The number of users in red regions are
shown in Table 1. The whole social network and randomly selected
80% ratings are used for training. The remaining 20% ratings are
held out for testing. The random selection was carried out 5 times
independently and we report the average results.

Table 1: General Statistics of Four Datasets
Statistics Yelp Flixster Douban Dianping

Users 123,369 137,925 111,210 147,918
Users in

Red Region 69,393 61,382 39,957 75,366

Items 41,958 48,758 57,934 11,123
Ratings 804,791 8,071,979 15,221,584 2,149,675
Social

Connections 956,020 1,269,373 855,901 629,618

Rating
Sparsity 99.98% 99.88% 99.76% 99.87%

Edge
Sparsity 99.99% 99.99% 99.99% 99.99%

2http://www.yelp.com/dataset_challenge
3http://www.flixster.com
4http://www.douban.com
5http://www.dianping.com

5.2 Performance Metric
We adopt the Root Mean Square Error (RMSE) to measure the

accuracy of the predicted ratings because it is widely used in the
evaluation of rating-based recommendations [4]. RMSE is defined
as follows:

RMSE =

√√√√ 1

|N |
∑
ui,vj

(Rij − R̂ij)2,

where |N | denotes the number of tested ratings,Rij is a real rating,
and R̂ij is a predicted rating.

5.3 Competitors
To evaluate the effectiveness of our proposals, we compare with

the following state-of-the-art approaches:

• SCF [13] is a social collaborative filtering method. Unlike
the traditional user-based collaborative filtering (CF) that con-
siders the top-k similar users, SCF makes predictions based
on users’ direct friends. SCF has been reported superior to
CF.

• BaseMF [23] is the basic matrix factorization based approach
that does not take the social network into account.

• SR [18] is a social regularization model, which adopts the
individual-based regularization.

• SR+ [15]: an improved version of SR by using similar users
(i.e., users’ similarity is larger than θ) regarding to the target
user rather than just direct friends in SR.

• CircleCon [30] is an extension of SocialMF and uses category-
specific friends.

5.4 Community Detection
In some applications, it may be difficult to obtain the structure

information of communities. To the best of our knowledge, there
are no public datasets for the research of social recommender sys-
tems including such information. As a replacement, we use three
prominent overlapping community detection methods to identify
overlapping communities.

• CPM is the clique percolation method [20] based on k-clique.
A k-clique is the complete subgraph of k nodes (e.g., a 3-
clique is equivalent to a triangle), such that every two nodes
in the subset are connected by an edge. Two k-cliques are
adjacent if they share k − 1 nodes. A community is a maxi-
mal set of cliques, such that every clique can be reached from
every other clique through a series of adjacent cliques. CPM
only considers the structure of social network.

• BIGCLAM is the cluster affiliation model for big networks [28]
based on a novel observation that overlaps between commu-
nities are densly connected. It is efficient and scale to large
networks but only considers the structure of social network.
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• CESNA is one of the few overlapping community detection
methods that consider both structure and node attributes [29].
Since CESNA also takes user attributes into account, we use
a binary category vector from users to rated items to repre-
sent each user’s attributes. For example, if user ui rated item
vj of which the categories are Fast Food and Ice Cream then
we set the corresponding entities of his/her binary category
vector to 1. It has a linear runtime in the network size.

We use the fast clique percolation algorithm6 introduced in [21]
for CPM and the implementations from Stanford Network Analysis
Project7 for BIGCLAM and CESNA. For each user who does not
belong to any community, we form a simple community by taking
the user and all his/her direct friends.

5.5 Parameter Settings
We performed 5-fold cross-validation on the training set to em-

pirically tune parameters, so that each method achieves its own best
result.
λU and λV are set to 0.01 for all methods. In SR and SR+, β is

set to 0.35, 1.1, 0.6 and 0.55 on Yelp, Flixster, Douban, and Dian-
ping, respectively. SR+ requires an additional parameter θ which
is hard to know a priori and we adopt 0.75, used in the original pa-
per, in our evaluation. For CircleCon, β are set to 20 for Yelp and
Dianping. For MFC, λZ is set to 0.0001 on Douban dataset and
0.001 on other datasets. For MFC+, λZ is set to 0.1 for Douban,
0.5 for other datasets. We list the results for d = 10 where d is
the dimensionality of the latent space. As d varies, our methods
outperform the competitors consistently.

For community detection approaches BIGCLAM and CESNA,
default parameters are used. For CPM, we report the results when
k = 3. When k is less than 6, our methods beat SR method and
achieve their best result when k = 3. When k exceeds 6, the num-
ber of communities that can be detected begins to decline sharply
and our methods degrade to BaseMF.

5.6 Performance on All Users
We report the results of all tested users in Table 2. The standard

deviations of the results are around 0.0015. The notation p, b, c
denote that community structures are generated from CPM, BIG-
CLAM and CESNA, respectively. The percentages are the highest
improvements of MFC or MFC+ over the competitors. For exam-
ple, the best results in Flixster (1.0134) is achieved by MFC+

b and
the percentages in that row mean the percentages of the improve-
ments of MFC+

b over the baselines. Note that datasets Douban and
Flixster do not contain additional information about item category.
Therefore, CESNA cannot be used in Douban and Flixster and the
corresponding results are denoted by “None".

Our proposed models beat all competitors in all the four datasets,
since the community information plays a positive role in rating pre-
dictions. The SR model only considers direct friends, hence the
predictions for the users having few friends may not be accurate.
Also, some of the friends may have inconsistent interest with the
target user, causing the SR model to make inaccurate predictions.
Although the SR+ model takes highly similar users into account,
our approaches further refine the similarities using community in-
terest. The effectiveness has been proved by the result. Our propos-
als beat the state-of-the-art SR model by 7%-16% and SR+ model
by 5%-11% on four datasets. As an indication about the signif-
icance of this improvement, the well-known Netflix Prize8 of one
6http://github.com/aaronmcdaid/MaximalCliques
7http://snap.stanford.edu/snap
8http://www.netflixprize.com

million US dollar was awarded to a team for reducing the RMSE by
10% compared to the state-of-the-art. As another evidence, the im-
provements reported in previous work are around 5% for SocialMF
compared with STE in dataset Flixster and 1.42%-2.33% for SR
compared with STE in dataset Douban.

CircleCon divides direct friends into different circles and each
circle corresponds to one category. When making prediction, only
one circle is considered. To compare our approaches with Circle-
Con, we evaluate the prediction results of category Restaurants in
datasets Yelp and Dianping since datasets Douban and Flixster do
not have the information about item category. Restaurants is the
largest category in both two datasets. Table 3 displays the results
for Restaurants category. According to the results, our approaches
outperform CircleCon, since CircleCon has the same limitation as
does SR that only direct friends are considered.

From experiment results, we can also find that our methods out-
perform baselines no matter which overlapping community detec-
tion methods is employed. MFCb and MFC+

b are slightly better
than MFCp and MFC+

p . When additional information about users
is available, MFCc and MFC+

c perform much better than MFCb,
MFC+

b , MFCp and MFC+
p . It is reasonable because CESNA con-

siders both node attributes and structure while CPM and BIGCLAM
only take structure into account. Our methods are independent of
the communitiy detection methods and the reduction of RMSE may
go up if better community detection method is used. When explicit
community structure is known, our models are expected to perform
even better since they outperform baselines though current commu-
nity structure is generated from community detection methods.

5.7 Performance on Cold-Start Users
In this section, we consider two types of cold-start users in or-

der to evaluate the performance of our approaches:rating cold-start
users, who have few ratings, and social cold-start users, who have
few social connections. Recommender systems must be capable
of matching the characteristics of an item against relevant features
in the user’s profile. In order to do this, it must first construct
a sufficiently-detailed model of the user’s tastes and preferences
through preference elicitation. Rating cold-start users is challeng-
ing for traditional recommender systems, because there is not enough
information about them that can be utilized to generate a recom-
mendation. A motivation behind social recommender systems is to
utilize social information to improve prediction accuracy for rating
cold-start users. Previous studies [17, 7] illustrate the effectiveness
of taking direct friendships into account when making predictions
for rating cold-start users. However, social cold-start users are ig-
nored in most evaluations of social recommender systems. On av-
erage, 44.70% of users are rating cold-start users and 50.62% of
them are social cold-start users in four datasets used in our experi-
ments (i.e., users in red regions in Figure 6). Due to the significant
number of both rating cold-start and social cold-start users, the ef-
fectiveness of any social recommendation approach is important for
both of these two types of users.

We assess the performance of our approaches for rating cold-
start users with less than 5 ratings (following the setting in [7, 19,
6]) and the results are reported in Table 4. We also evaluate the per-
formance for soical cold-start users (with less than 5 direct friends)
and the result is reported in Table 5. CircleCon cannot model cir-
cle influence when user does not have enough friends who have
rated items belonging to a specific category. CESNA fails to iden-
tify community for cold-start users due to the lack of their ratings.
Hence, their results are omitted. As expected, all methods perform
worse compared to the results in Table 2. However, our proposed
methods still reduce RMSE by 5%-10% for rating cold-start users
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Table 2: Performance Comparison
Dataset SCF BaseMF SR SR+ MFCp MFC+

p MFCb MFC+
b MFCc MFC+

c

Yelp 1.4730
24.35%

1.2498
10.84%

1.2216
8.78%

1.2032
7.39% 1.1618 1.1617 1.1543 1.1602 1.1324 1.1143

Flixster 1.1761
13.83%

1.1853
14.50%

1.1041
8.21%

1.0823
6.37% 1.0427 1.0436 1.0325 1.0134 None None

Douban 1.2788
31.37%

1.0478
16.24%

0.9441
7.04%

0.9322
5.86% 0.8952 0.8961 0.8776 0.8823 None None

Dianping 1.3642
41.86%

1.0598
25.16%

0.9449
16.05%

0.9012
11.98% 0.8678 0.8748 0.8812 0.8721 0.7932 0.8211

Table 3: Performance Comparison with CircleCon
Dataset CircleCon MFCp MFC+

p MFCb MFC+
b MFCc MFC+

c

Yelp 1.1907
7.71% 1.1332 1.1345 1.1287 1.1333 1.1001 1.0989

Dianping 0.8234
14.84% 0.7754 0.7801 0.7562 0.7612 0.7122 0.7012

Table 4: Performance on Rating Cold-start Users
Dataset SCF BaseMF SR SR+ MFCp MFC+

p MFCb MFC+
b

Yelp 1.7832
28.9%

1.4270
11.16%

1.3769
7.92%

1.3865
8.56% 1.3082 1.3079 1.2678 1.2867

Flixster 1.6086
27.42%

1.3573
13.98%

1.2589
7.25%

1.2321
5.23% 1.1747 1.1769 1.1676 1.1832

Douban 1.2194
23.90%

1.1198
17.13%

1.0373
10.54%

0.9823
5.53% 0.9280 0.9287 0.9331 0.9423

Dianping 1.6098
31.71%

1.3344
17.62%

1.1868
7.37%

1.2012
8.48% 1.1331 1.1197 1.1023 1.0993

Table 5: Performance on Social Cold-start Users
Dataset SCF BaseMF SR SR+ MFCp MFC+

p MFCb MFC+
b

Yelp 1.6472
25.2%

1.3902
11.44%

1.3521
8.94%

1.3234
6.97% 1.2938 1.2935 1.2421 1.2312

Flixster 1.4080
24.34%

1.2160
12.39%

1.1911
10.56%

1.1342
6.07% 1.0953 1.0956 1.0732 1.0653

Douban 1.4320
36.29%

1.1432
20.20%

1.0119
9.84%

1.0012
8.88% 0.9432 0.9234 0.9123 0.9321

Dianping 1.3724
35.00%

1.1027
19.10%

0.9847
9.40%

0.9321
4.29% 0.9109 0.9246 0.8921 0.9012

and 4%-10% for social cold-start users, compared with SR and
SR+ indicating that community regularization handles both rating
cold-start users and social cold-start users better than baselines.

5.8 Impact of parameter λZ

Parameter λZ controls the influence of communities in the pre-
diction process of MFC and MFC+. A large λZ indicates strong
influence of communities. Figure 7(a) show the impact of λZ over
dataset Dianping when CPM is employed and similar trends can be
observed over other datasets. MFC+ achieves its best performance
when λZ = 0.5, while the best results of MFC are when λZ is
small (0.001).

The two models exhibit different behaviors because MFC+ min-
imizes the distance between the target user and her/his interested
communities, while MFC tries to minimize the distances between
the target user and the users in the same communities. This means
that λZ is considered more times for MFC than for MFC+ in the
calculation of gradient descent, since the number of communities
to which the target user belongs is generally much smaller than the
numbers of users in these communities. Thus, a large λZ can help
MFC+ achieve a good result, while a small λZ can avoid the over-
influence of communities to MFC.

5.9 Comparison between MFC and MFC+

From the experimental results, we can see that MFC and MFC+

have similar performance. Intuitively, MFC should perform better
when the communities include diverse users since it minimizes the
distance between community members, while MFC+ should out-
perform MFC when community members have consistent tastes,
because it minimizes the distances between members and commu-
nity center. To analyze differences in the performance of these two
methods for different kinds of communities, we use Root Mean
Square Distance (RMSD) for comparison. RMSD is defined as:

S̄h =
2
∑
ui,uj∈ch

Sij

|Ch| (|Ch| − 1)
,

RMSD =

√
2
∑
ui,uj∈ch

(Sij − S̄h)2

|Ch| (|Ch| − 1)
,

where |Ch| is the number of users in community ch and Sij is
the PCC defined in Section 4.1. Small RMSD means community
members have consistent tastes.

Take for example dataset Dianping, where CPM is employed.
From Figure 7(b), we can see that MFC+ performs better than MFC
for users in communities with small RMSD. When RMSD exceeds
0.3, the results of MFC are superior.
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Figure 7: (a) Impact of parameter λZ on RMSE (Dianping) when CPM is employed. (b) Performance of MFC and MFC+ over
different kinds of communities in Dianping when CPM is employed.

6. DISCUSSION
In this paper, we improved the effectiveness of social-network

based recommendation, by proposing two models that incorporate
the overlapping community regularization into the matrix factor-
ization framework differently.

The idea of utilizing communities to enhance the accuracy of
rating prediction should not be confined to social network based
recommender systems. When more information is available, it
is also possible to consider communities of items and plug item-
community regularization into our models. Communities of items
can be obtained via item clustering based on the item features or
the user-item bipartite network. In addition, explicit relationships
(e.g., similar tastes and frequent interactions) can also be taken into
consideration instead of only considering implicit social relation-
ships. By considering information from both the implicit relation-
ships and item network, traditional recommender systems without a
supporting social network can benefit from social recommendation
models and the idea of social collaborative filtering can be applied
in a much broader context. Besides the above possible enhance-
ments, in our future work, we also intend to further analyze the re-
lationship between different community members and explore how
these relationships affect users’ rating behaviors, and, in turn, im-
prove our approaches based on these results.
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