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Abstract—Sequential recommendation is one of the main tasks in recommender systems, where the next action (e.g., purchase, visit,
click) of the user is predicted based on his/her past sequence of actions. Translating Embeddings is a knowledge graph completion
approach which was recently adapted to a translation-based sequential recommendation (TransRec) method. We observe a flaw of
TransRec when handling complex translations, which hinders it from generating accurate suggestions. In view of this, we propose a
translation-based recommender for complex users (CTransRec), which utilizes category-specific projection and temporal dynamic
relaxation. Using our proposed Margin-based Pairwise Bayesian Personalized Ranking and Time-Aware Negative Sampling,
CTransRec outperforms state-of-the-art methods for sequential recommendation on extremely sparse data. The superiority of
CTransRec, which is confirmed by our extensive experiments on both public data and real data obtained from the industry, comes from
not only the additional information used in training but also the fact that CTransRec makes good use of this additional information to
model the complex translations.
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1 INTRODUCTION

DUE to the availability of sequential data in recom-
mender systems (e.g., user’s click logs or purchasing

orders with timestamps), sequential recommendation has
become one of the core tasks for recommender systems [1].
Given a user’s historical data, sequential recommendation
aims at predicting his/her next action, e.g., next product to
buy, next restaurant for lunch or next POI (i.e., point of in-
terest) to visit. Unlike traditional two-way recommendation
which predicts the user’s preference over items, sequential
recommendation models the three-way interaction among
a user, an item he/she has selected and the next item
he/she will select. Modeling three-way interactions raises
new challenges due to the scale and inherent sparsity of
real-world data [2].

Our industrial partner (anonymized as ‘Alpha’ in this
paper) is a leading convenience store chain in the world.
Alpha is setting up unmanned stores in the central business
district (CBD) of several metropolitan areas and would like
to incorporate sequential recommendation model into their
unmanned shopping systems so that customers can get
immediate recommendations at checkout. Historical data
is extremely sparse in this application due to the large
number of products in unmanned stores. On the other hand,
user preference is traceable, as each store has its regular
customers who are white-collar workers in CBD offices near
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the store. They can be identified from their mobile phones
used to unlock the door and enter the unmanned store.

There are two directions in the study of sequential
recommendation. Factorized Personalized Markov Chains
(FPMC) [1] is the pioneering sequential recommendation
method. FPMC utilizes tensor factorization and models
three-way relations using two components: one is the in-
teraction between the user and the next item to be selected
and the other is the sequential history between previous
items and the next item. Due to its success in handling large-
scale data for sequential recommendation, FPMC has been
widely studied and improved by follow up work [3, 4, 5].
Another line of work is using recurrent neural networks
(RNNs) (e.g., Gated Recurrent Units (GRU) [6] and Long
Short-Term Memory (LSTM) [7]) or convolutional neural
networks (CNNs) (e.g., Convolutional Sequence Embed-
ding [8]). However, techniques in these two categories can-
not satisfy the requirements of companies such as Alpha
[9, 10, 11]: MC based methods perform better on sparse data,
though their accuracy is still low; Neural network based
approaches may capture features well on denser data, but
they are not suitable for fast online recommendation due to
the long and complex training process.

Recently, He et al. [2] proposed a translation-based recom-
mender (TransRec) for sequential recommendation. TransRec
is inspired by the large body of work on Knowledge Graph
(KG) Completion [12]. KG Completion models the user as a
‘translation’ from a previous action to the next action and
it has higher accuracy compared to MC based models. On
the other hand, TransRec is fast and scales well on large
data compared to neural network based approaches, since
it only considers transitions depending on the last action
which is the most significant factor affecting user’s next
action (especially on sparse data) [13]. The aforementioned
advantages make TransRec a good option for our client.
However, TransRec inherits a flaw of TransE in sequential
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recommendation. Although TransE is known for its ability
to model well 1-to-1 relations, it has been shown ineffec-
tive when handling 1-to-N, N-to-1, and N-to-N relations
in KGs [12, 14]. As we will explain in Sec. 3.1, TransRec
does not model well the so-called complex user translation
and therefore it cannot distinguish complex embedding
representations and give an accurate recommendation.

In this paper, we propose a translation-based recommender
for complex users (CTransRec), which can model translations
beyond 1-to-1. Recommender systems typically contain side
information like item categories and timestamps in addition
to user-item interaction data, which we utilize for solving
the problem of complex translation. To sum up, the key
contributions of this paper are:
• CTransRec maps item embeddings by performing item-

category projection before translation, via which items
have distinct representations when ‘translated’ by differ-
ent (complex) users.

• CTransRec considers the influence of time, which is ig-
nored by most previous work on sequential recommen-
dation. We use temporal dynamic relaxation to relax the
strict translation in TransRec. As we show, CTransRec with
temporal dynamics is, in fact, an explicit way to deal with
complex users.

• We analyze the relationship between CTransRec and exist-
ing KG completion methods and explain why CTransRec
can outperform TransRec in theory.

• We propose Margin-based Pairwise Bayesian Personalized
Ranking (MPBPR) and Time-Aware Negative Sampling (TNS)
approaches, which optimize our translation based recom-
mender.

• We conduct extensive experiments on a new real-world
dataset Dianping and other real public datasets which
show that CTransRec has superior performance compared
to the state-of-the-art models on extremely sparse data.
What is more, after testing CTransRec in several un-
manned stores of Alpha during a nine-month period, we
demonstrate its effectiveness in a real-world scenario.

Notation: We use lower-case fonts for scalars, bold
lower-case fonts for vectors and bold upper-case font for
matrices. For example, p is a scalar, p is a vector and P is a
matrix.

2 PRELIMINARIES

We first introduce the sequential recommendation prob-
lem. Since translation-based recommendation is related to
knowledge graph (KG) completion, we also briefly discuss
this problem. Then, we revisit the TransRec model, which
applies KG completion techniques to sequential recommen-
dation.

2.1 Sequential Recommendation
The sequential recommendation problem can be defined as
follows:
Definition 1 (Sequential Recommendation). Let U =
{u1, ... , u|U |} be a set of users and I = {i1, ... , i|I|} be a
set of items. The action sequence Su for each user u is the
sequence of items that the user has visited or selected in
the past (i.e., clicks, purchases, check-ins): {a1, ... , a|Su|},
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Fig. 1. Part of the Transition Graph for user u

where as = 〈is, ts〉 denotes that u selected item is at
time ts and t|Su| ≥ t|Su|−1 ≥ ... ≥ t1. Given a user
u and her action sequence Su, the goal of sequential
recommendation is to predict the item(s) that u will next
add to Su.

Definition 1 is general enough to cover the next-basket
sequential recommendation [1, 4, 5] where several items
are contained in one action (e.g., two or more items are
purchased together by u if they have the same timestamps in
Su), the session-based sequential recommendation [6, 15, 16]
where the action sequence for each user is divided into
several short sequences and the next-item sequential recom-
mendation [2, 3, 17] where each action involves just one
item. Note that sequential recommendation only predicts
the next target item(s), not the timestamp for the next action.

If we define the sequential recommendation problem
using probabilities, then the goal is to use the last action
in Su to estimate the probability Prob(j|u, i) that user u
transits from the previous item i to the next item j (i.e.,
the predictor) [2]. Sequential recommendation models rank
the possible next items j for the target user u according to
Prob(j|u, i) where i is the last item for u at the timestamp
that the system needs to recommend items to u, and the
action sequence Su can be represented as a transition graph:
Definition 2 (Transition Graph). The Transition Graph for

user u is formed by the action sequences Su, u ∈ U .
From each sequence Su we extract quadruples 〈previous
item i, user u, next item j, time interval fj,i〉, where fj,i
indicates the time interval between the corresponding
actions in Su referring to items i and j and there are
no items that u selected before j but after i. If there are
several items that u picked at the same timestamp, they
will form independent quadruples 〈i, u, ∗, f∗,i〉 with the
same time interval f∗,i. Each quadruple is an edge of the
graph that links the corresponding items.

Fig. 1 illustrates an example of part of the transition
graph for user u. In the example, j3 and j4 were selected by
u at the same timestamp t3 and fj3,j2 = fj4,j2 . The transition
graph models user actions in a sequential recommender. We
denote two consecutive actions on items i and j by the same
user u by either triple 〈i, u, j〉 or quadruple 〈i, u, j, fj,i〉 if the
time interval fj,i is needed.

2.2 Knowledge Graph Completion
Recent years have witnessed a rapid growth of knowl-
edge graphs (KG) such as YAGO, Freebase, DBpedia and
NELL [12]. A typical KG represents relationships between
entities as triples 〈head entity, relation, tail entity〉, abridged
as 〈h, r, t〉. For instance, 〈Einstein, BornIn, Ulm〉 represents
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one fact in KG. KGs provide ways to retrieve, organize and
manage human knowledge in structural forms, allowing AI
systems to perform reasoning and facilitating tasks.

Due to data sparsity, knowledge graphs are usually far
from complete. Knowledge Graph completion (KG completion)
aims at predicting which triples not in a knowledge graph
are likely to be true and fill in the missing piece of informa-
tion into the KG. For example, given an incomplete triple
〈DonaldTrump, PresidentOf, ?〉, the system should be able to
predict that the tail entity is USA. Translating Embeddings
(TransE) [18] is the most representative model for KG com-
pletion. TransE represents both entities and relations as k-
dimensional vectors (i.e., embeddings) in the same space
Rk. The relation is interpreted as the translation vector r
and the embeddings for h and t can be bridged by r with
low error: h + r ≈ t. For example, TransE models the
above example as DonaldTrump + PresidentOf≈USA. TransE
is motivated from word embedding [19], which represents
words as vectors and then captures linguistic regularities,
e.g., king−man+woman ≈ queen. There is a large amount
of work towards KG completion; readers can refer to [12] for
a detailed survey

Sequential recommendation is similar to KG completion,
since (i) it predicts values for incomplete triples of the form
〈previous item, user, ?〉 where ? is the next item and (ii)
KG completion models multiple complex relations between
entities in a similar manner as a sequential recommender
models transitions between items.

2.3 TransRec
Motivated by TransE, TransRec learns a transition space
Φ = Rk where each item is represented by a k-dimensional
vector p ∈ Φ (i.e., embedding) and each user is expressed
as a translation vector q ∈ Φ. Then, one triple 〈previous item
i, user u, next item j〉 in user u’s historical records Su is
modeled as pi + qu ≈ pj , which means user u is the trans-
lation from item i to item j. According to the definition, pj
should be close to pi+qu under some metric like Euclidean
distance. Then a similar objective function like TransE is
used as the predictor: Prob(j|u, i) = βj − ||pi + qu − pj ||2,
where βj is the bias term for item j and ||...|| indicates
Euclidean distance.

3 CTRANSREC

KGs contain auxiliary information (e.g., types of entities,
graph structure and textual information) that can help in the
KG completion problem [12]. Analogously, user-item inter-
actions in recommender systems have side information. In
this section, we introduce our translation-based recommender
for complex users (CTransRec), which utilizes item category
and temporal dynamics. Due to the high relevance between
translation based recommendation and KG completion, we
also connect the techniques in CTransRec to some existing
models for KG completion problem and explain why CTran-
sRec is superior to TransRec, besides the intuitive reason
that additional information is incorporated.

3.1 Complex User Translation
The superiority of TransRec over older sequential recom-
mendation techniques that are not based on translation

Pi qu

Pj  … Pj1 d
Pj  … Pj1 d

Fig. 2. TransRec cannot distinguish complex translations and the em-
beddings of pj1 , ... ,pjd are close to each other.

was shown in [2, 13]. However, TransRec inherits a flaw
of TransE; TransE is well suited for 1-to-1 relations, but it
fails when dealing with complex relations in knowledge
graphs [12, 14]. Analogously, there are 1-to-N, N-to-1, and
N-to-N user translations in sequential recommendation. For
example, for user u in Fig. 1 and (previous) item j2 there are
more than one (simultaneous) next items in u’s transition
graph (i.e., j3 and j4).

We illustrate the flaw of TransRec via a more detailed
example below. Before that, we formally define the concept
of complex user as follows:
Definition 3 (Complex User). A user u, which is the trans-

lation between items that have more than one preceding
or successive items via u, is a complex user or a complex
user translation.

Example 1 (Flaw of TransRec). User u in Fig. 1 is complex,
because there are 1-to-N (t2 → t3), N-to-1 (t4 → t5), and
N-to-N (t3 → t4) edges in the transition graph. TransRec
enforces pi + qu ≈ pj for all j = 1, ..., d such that 〈pi,
qu, pj〉 exists; hence, pj1 ≈ ... ≈ pjd as shown in the
graphical example of Fig. 2.

There are many such triples for the same customer
in Alpha’s shopping system (i.e., 〈i, u, ∗〉). For instance,
consider triples <cola, Alice, hamburger> and <cola, Alice,
french fries>, which mean that Alice first ordered cola then
hamburger/french fries. The embeddings of hamburger and
french fries will be close to each other in TransRec. Be-
cause of this, TransRec cannot distinguish items involved in
complex user translations for sequential recommendation,
which motivates the design of our CTransRec method.

3.2 Category-Specific Projection
To overcome the drawback of TransRec in dealing with
complex user translation, we should allow an item to have
distinct representations when chosen by different users. Our
CTransRec model maintains, for each item and user, two
vectors. The first vector is a classic embedding vector which
encodes the features of an item or a user, while the second
one is the projection vector which is used to map the item to
different representation spaces.

Specifically, CTransRec introduces projection vectors s
for each item and user-specific projection vectors g in ad-
dition to the embeddings p and q. The embeddings of
previous and next items are projected into different repre-
sentation spaces by the following mapping matrices first:

Mu,i = gus
T
i + I, Mu,j = gus

T
j + I (1)
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Fig. 4. Projection allows an item to have distinct representations when
chosen by different users and even same embedding vectors will have
different representations for different users.

where I is the identity matrix.
Then the translation of TransRec becomes:

Mu,ipi + qu ≈Mu,jpj . (2)

CTransRec maps items into the user vector space via
M = gsT and then the projected item embedding Mp is
translated in the user vector space via qu. By utilizing the
projection, CTransRec allows each item to have multiple
representations, which brings two benefits: (i) As shown in
Fig. 3, the projected representations Mu,j1pj1 and Mu,jdpjd
are close to each other in the user vector space. But the
different projection matrices Mu,j1 and Mu,jd force the
embedding pjd to be away from pj1 , even if they have the
same preceding item and user translation. Thus, CTransRec
addresses TransRec’s flaw illustrated in Fig. 2. (ii) When
involved in different translations (i.e., users), the same item
has multiple distinct representations which capture the per-
sonalized user translations (see Fig. 4).

One may ask that why we do not use a simpler approach
which maintains one projection Mu for each user. This way,
the translation could be expressed as Mupi + qu ≈Mupj .
The reason is two-fold. First, different items have different
attributes and it is insufficient to reflect this diversity if all
the items share the same projection matrix Mu for the same
translation u. On the other hand, similar items should have
similar projections for one user translation, which can be
controlled by si in Eqs. 1 and 2. Eqs. 1 and 2 are a more fine-
grained translation, as the projection gsT considers both
user and item features from the specific item-user pair.

Second, Eqs. 1 and 2 only involve vector-level operations
(explained in Sec. 3.5) and they scale well to large data in
practice, compared to adopting one projection matrix which
requires matrix-vector products.

However, sequential records are typically very sparse
in recommenders. Training one projection for every item
is infeasible. Fortunately, item category information typ-
ically exists (e.g., genres of music in Yahoo! Music [20]
and categories of POIs in Foursquare and Gowalla [21])
and daily human activities usually present category-level
transition patterns [22]. Our solution to the sparsity problem
is motivated by FPMC-LBPR [22], where instead of the user-
item matrix the user-category matrix is utilized because it
contains rich information and it is of smaller size. CTran-
sRec adopts a category projection vector s in Eq. 1 (i.e.,
one projection vector for each category) instead of learning
a projection for each item. By harnessing category-based
projection, items of one category share the same projection
which represents their homogeneity, while items in different
categories have distinct mappings to reflect their diversity.
Meanwhile, items with a small number of records can still be
projected (i.e., their projection vectors can be learned using
the records of other items in the same category). Finally, the
probability that user u transits from the previous item i to
the next item j (i.e., predictor) is:

Prob(j|u, i) ∝ βj − ||Mu,ipi + qu −Mu,jpj ||2, (3)

where βj is the bias term which captures the popularity of
item j. CTransRec also enforces item embedding ||p|| ≤ 1
and category-specific projection vector ||s|| ≤ 1, which have
been shown to be effective for KG completion [12, 14] and
TransRec also adopts it for sequential recommendation. In
this paper, we use Euclidean distance ||...||2 in the predictor,
because it has been proved more interpretable and effective
in translation based models [23]. Still, other metrics like
Manhattan distance can also be utilized here.

In practice, one item may belong to multiple categories.
For example, Spicy Jalapeno Grilled Chicken Burger is both
spicy food and fast food. To model multiple categories for
one item, we propose a general form of category projec-
tion vector: si for item i is the weighted summation of
all category-specific vectors o wherein the item resides:
si = oz/|Ci|, z ∈ Ci where Ci represents all categories that
item i belongs to.

Connection to KG completion. TransRec is inspired by
TransE, which models a relation in a knowledge graph as the
translation from a head entity to a tail entity: h+r ≈ t. Simi-
larly, the prototype of the first predictor (Eq. 3) in CTransRec
can be traced to TransD [14], one of the successors of TransE.
In TransD, there are additional mapping vectors mr , mh

and mt. Head entity h and tail entity t are projected by
matrices M1

r = mrm
T
h + I and M2

r = mrm
T
t + I first (I

is the identity matrix). Then two projected head and tail
vectors, together with the translation r are used in the same
translation function as in TransE. Compared to TransD,
CTransRec uses category-level projection vector for items
instead of one projection vector for each vector, which helps
to alleviate data sparsity; items without much information
can benefit from other items in the same category.
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3.3 Temporal Dynamic Relaxation

Modeling temporal changes in customer preferences is a
traditional task in user modeling and many efforts have
been made to incorporate temporal information into col-
laborative filtering [24, 25, 26]. For instance, Ding and Li
[24] found appropriate time weights for items such that the
items rated recently can contribute more to the prediction of
the recommendation items.

On the other hand, temporal dynamics are rarely con-
sidered in KG completion [12]. For the sequential recom-
mendation problem, as far as we know, most previous
models consider the order of actions (e.g., Bob first bought
an MP3 player and then bought earphones) and a few recent
approaches [21, 27, 28] explicitly take time differences (i.e.,
Bob bought earphones one day after he bought an MP3 player)
into consideration. Ignoring temporal information simplifies
the model but makes recommendation less accurate.

Inspired by the work on temporal collaborative filter-
ing [24, 26] which uses an exponential decay function to
penalize the ratings made long ago, we use exponential
growth to model the influence of time (i.e., the strength of
translation) in sequential recommendation:

Prob(j|u, i) ∝ βj−eλ(tj−ti)||Mu,ipi+qu−Mu,jpj ||2, (4)

where λ is the growth rate and tj represents the timestamp
when user u performed an action on item j. By adopting
an exponential growth function, the distance between the
projected embeddings pi and pj increases with the time
difference tj − ti.

The rationale behind Eq. 4 is that we want to drive the
projected embedding of next item j close to Mu,ipi + qu
during training if items i and j were visited within a short
time interval. Items selected by a user in a short time should
share some common properties in the corresponding user’s
translation space, which means that the distance between
their representations is small. This is also known as the
temporal locality of the user’s behavior [26]. For instance,
if a person enjoys watching one certain movie, she will
search for related movies by the same directors/actors or of
the same genre. Another example is the POI recommender
where one users’ check-ins within short time are close
geographically.

Connection to KG completion. Even though there is no
model for KG completion that considers temporal dynamics,
we can find a method with similar format as what we used
in the second predictor (Eq. 4). By simplifying Eq. 4, we
have θ · dist(pi + qu,pj) where dist represents detailed
distance function. In this way, we can treat θ (i.e., eλ(tj−ti))
as a weight to relax the strict requirement pi + qu ≈ pj .
As demonstrated in Fig. 5, temporal information (i.e., θ)
controls how close the projected embedding of next item j is
to Mu,ipi+qu, and therefore the predictor in Eq. 4 is called
temporal dynamic relaxation. This is another way to distin-
guish items in complex user translations, besides allowing
them to have distinct representations. Thus incorporating
temporal dynamics into our translation based recommender
is indeed solving the problem that TransRec cannot handle
complex translations well. Coincidently, TransM [29], which
is another successor of TransE, associates each fact 〈h, r, t〉

with a weight θ specific to r and the score function of TransE
becomes −θr||h + r− t||2.

Pi
qu

Pj
1

Pj
1

d
Pjd
Pj

(q < 1)

(q > 1)

Fig. 5. Temporal information allows CTransRec to relax the strict require-
ment pi + qu ≈ pj .

3.4 Learning Procedure

CTransRec follows the Pairwise Bayesian Personalized
Ranking (PBPR) framework of FPMC [1]. We adopt margin-
based optimization which is commonly used in training KG
completion [23] and propose Margin-based Pairwise Bayesian
Personalized Ranking (MPBPR). Together with MPBPR, Time-
Aware Negative Sampling (TNS) which fits the temporal in-
formation used in CTransRec is utilized for sampling. The
details of the procedure are as follows:

Ranking Optimization. The goal of PBPR is to rank the
true item(s) higher than other items when making next-
item prediction. In other words, pj should rank higher than
other items when making a prediction for 〈pi, qu, ?〉, if
triple 〈pi, qu, pj〉 exists in u’s history records. Margin-
based optimization is the prevalent optimization method
for translation based models in KG completion [12]. The
core idea is to update only those embeddings for which the
score for the corresponding true triple is not higher than the
score for negative triples by a predefined margin γ. Margin-
based optimization is a way to avoid overfitting since it
stops training for those embeddings that are already good
enough.

CTransRec combines PBPR and margin-based optimiza-
tion, and uses Margin-based Pairwise Bayesian Personalized
Ranking in the optimization function:

Θ̂ = arg max
Θ

∑
u∈U

∑
j∈Iu

∑
j′ /∈Iu

min
(

0, σ(ŵu,i,j − ŵu,i,j′)− γ
)

− Ω(Θ),
(5)

where Iu represents the set of items that user u has visited,
U indicates all users, γ is the margin separating positive
and negative quadruples, σ is the sigmoid function, Θ is the
parameter set, Ω(Θ) is the L2 regularizer and ŵu,i,j is the
predictor defined in Eq. 3 or Eq. 4.

Then, parameters can be updated via Stochastic Gradient
Ascent (SGA) if the margin test can be passed. Due to space
limitations, we do not give individual update rules for each
parameter. Instead, we provide a general update rule, which
can be used for all parameters:

Θ← Θ+η ·
(
σ(ŵu,i,j′−ŵu,i,j)

−∂(ŵu,i,j′ − ŵu,i,j)
∂Θ

−ω ·Θ
)
,

(6)
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Algorithm 1 Learning Procedure of CTransRec
1: Initialize each dimension of s,g,p,q with uniform distribution in

interval (− 6√
k
, 6√

k
). Set all β to zero.

2: while not converged do
3: for i ∈ 1...|V | do . V is all the training triples.
4: Uniformly sample one user u
5: Uniformly sample one positive item j ∈ Iu
6: Uniformly sample one negative item j′ /∈ Iu
7: fj,i ← σ(tj − ti) . i is the direct preceding item of j.
8: fj′,i ← σ

(
Rand(f̄j′ ,+∞)

)
9: if σ(ŵu,i,j − ŵu,i,j′ ) < γ then

10: Update all parameters according to Eq. 6
11: Normalize s and p for i, j, j′ if ||s|| > 1 or ||p|| > 1

where η is the learning rate and ω is the regularization
weight. Note that CTransRec can be updated using other
methods like AdaGrad [30] and AdaDelta [31].

Time-Aware Negative Sampling. TransRec adopts the tra-
ditional negative sampling method for KG completion [12]
which samples for each positive triple 〈pi, qu, pj〉 one
negative triple 〈pi, qu, pj′〉 such that j′ /∈ Iu. This method,
however, cannot be adopted by CTransRec directly since
CTransRec relies on the timestamps of both positive item
j and negative item j′ when computing the time intervals
fj,i = tj − ti and fj′,i = tj′ − ti used for exponential
growth in the predictor of Eq. 4. To obtain the time interval
tj′ − ti for a negative triple, CTransRec counts for each
item j the maximum time interval f̄j between j and any
of its direct preceding items. Then, the time interval for the
negative triple with negative sample item j′ is uniformly
sampled within range (f̄j′ ,+∞). Here, we follow the closed-
world assumption commonly used for knowledge represen-
tation [32]: what is not currently known to be true, is false.
Since the maximum time interval between item j′ and its
direct preceding item is known to be f̄j′ in the existing data,
we presume that any time interval longer than f̄j′ cannot
be true for item j′ and therefore the time interval for the
negative triple can be sampled within this range. Finally,
fj′,i is passed through the sigmoid function before being
used in the predictor, so that efj′,i is not too large for the
computer to process. Time intervals for positive triples also
follow the same step.

Overall Procedure. Putting MPBPR and TNS together, the
overall learning procedure of CTransRec is shown in Alg. 1.
We follow the initialization method for embeddings used
in TransRec. After the model is trained, CTransRec (like
typical sequential recommenders [2, 4]) ranks the possible
next items j for u according to the values of the predictor
Prob(j|u, i) where j ∈ I and i is the last item for u at the
timestamp that the system needs to give recommendations
to u. The items with highest predictions are then recom-
mended to u.

3.5 Model Complexity
The number of parameters in CTransRec is 2k|U |+ 2k|I|+
|I|, since it requires two k-dimensional vectors (i.e., embed-
ding vector and projection vector) for each user and item
and one bias for each item. Compared to TransE which has
k|U | + k|I| + |I| parameters, observe that CTransRec does
not require learning many more parameters, even though it
uses additional information.

TABLE 1
Data statistics after cleaning

Data # of Users # of Items # of Categories # of Actions Sparsity

Yelp 204,748 115,763 1,213 3,091,984 99.99%
GoogleLocal 346,238 501,115 7,141 2,571,085 99.99%

Dianping 616,331 10,979 247 3,868,306 99.94%

Since the time complexity depends on the number of
positive/negative quadruples 〈previous item, user, next
item, time interval〉 which can pass the margin test (line
9 in Alg. 1), we cannot evaluate the overall time complexity
accurately. However, we can estimate the time complexity
for updating one pair of positive/negative quadruples (lines
10-11 in Alg. 1), which depends on the update rule in Eq. 6.
The projected representation in the predictor ŵu,i,j can be
computed using matrix associativity: gusTi pi = gu(sTi pi).
Since sTi pi is indeed the inner product between two k-
dimensional vectors si and pi, computing gus

T
i pi actually

contains two steps: compute inner product sTi pi and then
do element-wise multiplication between the result (scalar)
and gu. Therefore the computation only requires vector-
level operations, which have a complexity of O(2k). The
time complexity for ŵu,i,j′ − ŵu,i,j is dominated by the
computation of representation for CTransRec. After obtain-
ing ŵu,i,j′ − ŵu,i,j , CTransRec needs to update eight k-
dimensional vectors (i.e., embeddings and projection vec-
tors for u, i, j, j′) and three item bias values for i, j, j′

according to Eq. 6. Thus, CTransRec needs O(2k + 8k + 3)
time to update the corresponding parameters in one pair of
positive/negative quadruples. Similarly, the complexity of
TransRec consists of two parts: ŵu,i,j′−ŵu,i,j and updating,
i.e., O(k + 4k + 3) in total.

In summary, CTransRec requires roughly two times of
the number of parameters and time compared to Tran-
sRec. Specifically, its time complexity for one pair of posi-
tive/negative quadruples is linear to the dimensionality k.
Assume the number of pairs which pass the margin test
is |B|, then the complexity for one iteration is O(k|B|) in
CTransRec. Thus, CTransRec scales well for large data in
practice.

4 EXPERIMENTS

In this section, we conduct an experimental study using real
datasets to answer the following questions:
• Q1: Does the proposed CTransRec model outperform the

state-of-the-art sequential recommendation approaches?
• Q2: Is CTransRec sensitive to hyperparameters and up-

date method?
• Q3: For next-category prediction, does CTransRec achieve

better results than a baseline method which also considers
category information?

• Q4: What is the performance of CTransRec when applied
to the unmanned stores of Alpha?

We first present our experimental settings and then
answer Q1, Q2, Q3 and Q4 in Secs. 4.2, 4.3, 4.4 and 4.5,
respectively.

4.1 Experimental Settings

Data. We use three real datasets for our experiments. As
far as we know, they are the largest datasets containing
category and temporal information.
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TABLE 2
Results on sequential recommendation (k = 10, η = 0.5)

Data Metric FPMC PRME HRM Time-LSTM Caser TransRec CTransRecc CTransRecct Percentage

Yelp
AUC 0.8412 0.9134 0.9014 0.8261 0.8516 0.9238 0.9442 0.9512 2.97%

Hit@50 5.32% 6.34% 6.12% 3.24% 5.47% 7.43% 8.17% 8.45% 13.73%
Time (Secs) 84.92 59.64 56.73 62451.32 84654.15 108.68 229.19 248.75 28.88%

GoogleLocal
AUC 0.7211 0.7986 0.7321 0.7348 0.7612 0.8177 0.8512 0.8664 5.96%

Hit@50 3.21% 8.52% 3.99% 3.45% 6.98% 10.98% 13.21% 13.54% 23.32%
Time (Secs) 95.14 77.70 75.04 84798.42 12456.42 93.04 198.78 209.15 24.80%

Dianping
AUC 0.8023 0.7498 0.7531 0.7419 0.7849 0.7972 0.8201 0.8141 2.87%

Hit@50 6.34% 4.45% 4.21% 4.41% 6.01% 6.26% 7.01% 6.97% 11.98%
Time (Secs) 71.06 45.00 47.08 54781.35 79478.01 94.63 204.22 221.33 15.81%

• Yelp1 dataset was provided for the tenth round of the Yelp
Dataset Challenge. It contains 4,736,897 reviews and ratings
from 1,183,362 users over 156,638 local businesses in 1,240
categories.

• GoogleLocal2 from Google includes 10,487,697 reviews
and ratings from 4,537,091 users on 3,061,290 local busi-
nesses in 48,013 categories across five continents.

• Dianping3. We constructed a new benchmark for evalu-
ating sequential recommendation by crawling data from
Dianping4, which contains 772,697 customers’ ratings and
reviews (4,822,754 in total) for 11,723 restaurants in Shang-
hai from April 2003 to November 2013. The number of
categories is 248.

Following [2], we discard users/items with fewer than
5 actions and categories with fewer than 5 items. Since
our approaches focus on implicit feedback, we regard each
purchase/rating/check-in as one action. Tab. 1 shows statis-
tics for all datasets after cleaning. These three datasets are
extremely spare (sparsity = 99.9%).

Competitors. We compare CTransRec to seven approaches:
FPMC [1], PRME [4], HRM [5], Time-LSTM [28]5, Caser [8]6,
TransRec [2]7 and FPMC-LBPR [22]. FPMC-LBPR is a com-
petitor for the next-category prediction task and the other
approaches are used to evaluate sequential recommenda-
tion. In our experiments, average pooling for both two steps
is used for HRM as it shows better performance in [2]. De-
tailed explanation of these models can be found in Sec. 5.2.

We test two versions of our CTransRec approach.
CTransRecc indicates our method with category-specific
projection (predictor in Eq. 3) and CTransRecct represents
our method using both category-specific projection and
temporal dynamics relaxation (predictor in Eq. 4).

Environment. Experiments were conducted on a machine
with two Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz, 128
GB of main memory, three NVIDIA GeForce Titan X Pascal
(12 GB memory for each) and Debian 9. All methods except
for Time-LSTM and Caser are single-threading and imple-
mented using standard C++ libraries. Time-LSTM and Caser
are implemented using Theano and PyTorch, respectively.

Evaluation. We follow the evaluation settings in [2] and
partition the edges of the transition graph for each user into
three parts. The 10% most recent timestamps are used for

1. https://www.yelp.com/dataset/challenge
2. http://jmcauley.ucsd.edu/data/googlelocal
3. http://lihui.info/data/dianping.html
4. http://www.dianping.com
5. https://github.com/DarryO/time lstm
6. https://github.com/graytowne/caser pytorch
7. https://sites.google.com/view/ruining-he

testing, the second 10% most recent timestamps are used
for validation and the remaining timestamps are used for
training. If a user does not have enough timestamps (≤ 10),
all the edges will be used for training. For instance, if t4
in Fig. 1 is used for validation, edges 〈j3, u, j5〉, 〈j3, u, j6〉,
〈j4, u, j5〉 and 〈j4, u, j6〉 will be used for validation. The
performance of different models are evaluated using Area
Under the ROC Curve (AUC) and Hit Rate at position 50
(Hit@50):

AUC =
1

|T |
∑

<i, u, j, fj,i>∈T

1

|I \ Su|
∑

j′∈I \Su

1(Ru,j < Ru,j′),

Hit@50 =
1

|T |
∑

<i, u, j, fj,i>∈T

1(Ru,j ≤ 50),

(7)
where 〈i, u, j, fj,i〉means 〈previous item i, user u, next item j,
time interval fj,i〉, Ru,i is the rank of item i for user u among
all items, T is the test set and 1(e) returns 1 if e is true and
0 otherwise. Note Su in Eq. 7 only contains training records.

Hyperparameters. We set learning rate η = 0.5, dimen-
sionality k = 10 and investigate the best hyperparameters
for the regularization weight ω in {0, 0.001, 0.01, 0.1, 1},
margin γ in {0.01 0.05 0.1 0.5 0.8}, growth rate λ in {0.01,
0.1, 0.5, 1} and α8 in {0.2, 0.5, 0.8} on the validation set for
the corresponding models. For Caser, we carefully follows
the instructions in [8] to tune all its hyperparameters9:
The dropout rate is set to 0.5, the Markov order L ranges
in {1, · · · , 9}, the height h of horizontal filters ranges in
{1, · · · , L}, the target number T ranges in {1, 2, 3}, the
activation functions φa and φc range in {identity, sigmoid,
tanh, relu}. For each height H , the number of horizontal
filters is in {4, 8, 16, 32, 64} and the number of vertical filters
is in {1, 2, 4, 8, 16}.

All methods are trained until convergence and we report
results on the test set under the selected hyperparameters
in Sec. 4.2. In addition to the above search ranges, we also
report the effect of η and k when using different η in {0.05,
0.3, 0.5, 0.8} and k in {10, 30, 50, 80, 100} in Sec. 4.3.

4.2 Overall Performance (Q1)
Tab. 2 illustrates the overall performance of all methods
on the three datasets when k = 10, η = 0.5 and other
hyperparameters were tuned to their best values. The last
column ‘Percentage’ shows the improvement percentage (or
the overhead increase) of our models (either CTransRecc
or CTransRecct) over the competitors with best AUC and

8. α controls the balance between user-item interaction and item-item
interaction in PRME. See Tab. 4 in Sec. 5.2 for explanation.

9. Please refer to [8] for detailed explanations of Caser’s hyperparam-
eters.

https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/googlelocal
http://lihui.info/data/dianping.html
http://www.dianping.com
https://github.com/DarryO/time_lstm
https://github.com/graytowne/caser_pytorch
https://sites.google.com/view/ruining-he
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Hit@50. The best results on AUC and Hit@50 are reported
in bold.

We can see that PRME and HRM have better perfor-
mance than FPMC. As we will explain in Sec. 5.2, PRME and
HRM are essentially extensions of FPMC. PRME replaces
the inner product used in FPMC with Euclidean distance
and the distance of two objects measures the strength of
their sequential relation. Since the metric space obeys the
triangular inequality, Euclidean distance is more suitable than
inner product for modeling ranking. HRM uses aggregation
operations to model more complicated interactions among
different factors beyond the independence assumption, in-
stead of the simple interactions used in FPMC. Time-LSTM
and Caser do not show better performance compared to
traditional MC-based methods, as the datasets are extremely
sparse. The above observation confirms the conclusion in [9]
that MC-based methods perform best in sparse datasets,
where model parsimony is critical, while neural network-
based models perform better in denser datasets where
higher model complexity is affordable.

Compared to non-translation based models, translation-
based models TransRec and CTransRec achieve considerable
improvements. This demonstrates the advantage of incor-
porating translation-based methods for KG completion into
models for sequential recommendation. Due to the ability to
handle complex user translation, CTransRec is significantly
better than TransRec. To be specific, CTransRec improves
AUC by 2.87%-5.96% and Hit@50 by 11.98%-23.32% com-
pared to TransRec. CTransRecc outperforms all previous
work including TransRec on all three datasets, illustrat-
ing the impact of category-specific projection. Compared
to CTransRecc, CTransRecct has better results on datasets
Yelp and GoogleLocal, which shows that taking temporal
information into account improves the quality of sequen-
tial recommendation. For dataset Dianping, CTransRecct is
marginally worse than CTransRecc. A possible reason is
that dataset Dianping contains fewer categories and there
are many items in each category sharing similarity. Hence
only using category-specific projection already deals with
complex user translations well and using the temporal in-
formation in addition only introduces noise. In practice, we
suggest deploying CTransRecct for a system with more item
categories while CTransRecc is more suitable for a system
with fewer item categories where each category contains
more homogeneous items.

The runtime cost of the translation based methods Tran-
sRec and CTransRec is higher than that of FPMC, PRME
and HRM. Compared with TransRec, CTransRec has a 15%-
28% time overhead. Considering the improvement of recom-
mendation quality over competitors, we believe CTransRec
is worth the additional cost. What is more, the sampling
method in Algorithm 1 can be easily sped up using HOG-
WILD!-style parallelization [33] like many KG completion
methods10 (i.e., each thread samples independently) and the
cost can be significantly reduced. Compared to methods
without neural networks (single-threading in our experi-
ments), Time-LSTM and Caser require much longer training
time even though they utilize the power of GPUs. This
shows that neural network-based methods are not suitable

10. https://github.com/thunlp/Fast-TransX

for the scenario where a fast recommendation is required
(e.g., online recommendation).

4.3 Sensitivity (Q2)
We explore the effect of dimensionality k, learning rate η,
regularization weight ω, margin γ and growth rate λ on
CTransRec. To evaluate the effect of ω, γ and λ, we report
the results when different values are used while fixing
k = 10, η = 0.5 and grid search is conducted to keep other
hyperparameters optimal in their ranges. For example, we
evaluate the sensitivity to ω by reporting the performance
when ω is one of {0, 0.001, 0.01, 0.1, 1}, k = 10, η = 0.5
and other hyperparameters are tuned to be optimal. When
evaluating the effect of k, we set η = 0.5 and tune other
hyperparameters to be optimal. For the results of η, we set
k = 10 and also tune other hyperparameters so that models
show their best performance. Since we show AUC and
HIT@50 for all the datasets in this section (i.e., Figs. 6, 7, 8, 9
and 10 in the following), we indicate the measure of the
y-axis and the dataset at the top of each plot (e.g., “Yelp
(AUC)”) in order to save space.

Dimensionality k. We increase the dimensionality from 10
to 100 while tuning other parameters so that each model
has its best performance at a specific k. Fig. 6 compares
CTransRecct with TransRec and shows that the performance
of both methods improves as k increases and CTransRecct
consistently outperforms TransRec. On dataset Yelp, the
AUC of CTransRecct does not increase significantly as k
rises. A possible explanation is that a small k already gener-
ates very high AUC (0.95) for CTransRecct and increasing k
does not benefit the model.

Learning rate η. Fig. 7 demonstrates the effect of η on Tran-
sRec and CTransRecct. We can conclude that η is relatively
easy to choose as CTransRec performs best when η is close
to 0.5 on all three datasets. CTransRec outperforms TransRec
for all values of η.

Regularization weight ω. The influence of regularization
weight ω on TransRec and CTransRecct is evaluated in
Fig. 8. Although TransRec performs similarly to CTransRec
on dataset Dianping for some values of ω, in most cases
CTransRec has better performance. ω is also easy to tune in
practice since its changes are unimodal.

Margin γ. Margin γ affects MPBPR, as it controls how
many parameters need to be updated under the current
state of the training model. In fact, γ helps CTransRec to
avoid overfitting. From the results shown in Fig. 9, we can
find that a small γ (0.05) typically produces best results
for CTransRecc while CTransRecct requires a little larger
γ (0.1). The larger γ is, the more possible that a pair of
positive/negative quadruples can pass the margin test and
the method will need to update the corresponding param-
eters. Since CTransRecct additionally adopts the relaxing
translation as shown in Fig. 5, it should have more flexi-
bility to deal with complex translation and avoid overfitting
compared to CTransRecc. Therefore, although more pairs
pass margin test and more parameters are updated under
larger γ, CTransRecct still produces good results. The only
exception is dataset Dianping where the performance of
CTransRecct drops as γ increases. As explained in Sec. 4.2,

https://github.com/thunlp/Fast-TransX
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Fig. 6. Performance for different values of k (η = 0.5)
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Fig. 8. Performance for different values of ω (k = 10, η = 0.5)
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category based projection already models translation well
and the additional temporal information introduces noise;
more parameters are updated and the result becomes worse.
In practice, we suggest a large γ for CTransRecct while
CTransRecc should use a smaller γ.

Growth rate λ. λ is related to how the time interval between
previous and next items affects the closeness between pro-
jected item embeddings. From Fig. 10 we can see that the
optimal value of λ can be found easily, since the perfor-
mance improves as λ increases until λ reaches an optimal
value after which the performance drops.

In summary, the hyperparameters of CTransRec are rela-
tively easy to tune and its performance is consistently better
than TransRec under different settings and update methods.

4.4 Next-category Prediction (Q3)

By replacing item embeddings p and weighted category
projection vector si in Eq. 4 with category embeddings c
and category-specific projection o respectively, we can set

the probability that user u transits from the category ci of
previous item i to category cj of next item j as:

Mu,i = guo
T
i , Mu,j = guo

T
j

Prob(cj |u, ci) ∝ βcj − e
λ(tj−ti)||Mu,ici + qu −Mu,jcj ||2,

(8)

where βcj is the bias for category cj . CTransRec ranks
each possible next category (cj) according to the value of
predictor Prob(cj |u, ci); finally, the categories with highest
ranks are suggested to the user.

Assume that one test triple is 〈i, u, ?〉, where the ground
truth is item j. i and j belong to categories {c1, c2} and
{c3, c4}, respectively. Then the test triple is further divided
into four test triples: 〈c1, u, c3〉, 〈c1, u, c4〉, 〈c2, u, c3〉 and
〈c2, u, c4〉. To compute AUC and HIT@50, Ru,cj which rep-
resents the rank of category cj among all categories for u is
used instead of Ru,j in Eq. 7:

AUC =
1

|T |
∑

<ci, u, cj , fj,i>∈T

1

|C \ Su|
∑

cj′∈C \Su

1(Ru,cj < Ru,cj′ ),

Hit@50 =
1

|T |
∑

<ci, u, cj , fj,i>∈T
1(Ru,cj ≤ 50),



10

TABLE 3
Results of next-category prediction (k = 10, η = 0.5)

Data Metric FPMC-LBPR CTransRecct Improvement

Yelp AUC 0.8101 0.8693 7.31%
Hit@50 12.34% 16.46% 33.39%

GoogleLocal AUC 0.8193 0.8631 5.35%
Hit@50 10.14% 15.28% 50.69%

Dianping AUC 0.7921 0.8542 7.84%
Hit@50 9.39% 14.86% 58.25%

where C \Su are categories that u has not selected before.
We compare the performance of CTransRecct with

FPMC-LBPR [22] for next-category prediction using SGA
and k = 10, η = 0.5. As we can see in Tab. 3, CTransRec
shows considerable improvement for the next-category pre-
diction task compared to FPMC-LBPR.

4.5 Experiments on Unmanned Stores (Q4)

We conducted an experimental study using data from eight
Alpha unmanned stores during a nine-month period in 2017
and 2018. The experimental unmanned stores are located at
different sides of a central business district and each store is
close to the entrance of the nearby metro. The test models
are TransRec and CTransRec. Considering the large volume
of real data when the system is deployed after the ex-
perimental stage, translation based methods are promising
candidates as they achieve a good balance between accuracy
and running time on sparse data.

The training data was collected during the first eight
months and there are 4,123 customers who bought at least
one item, 6,311 items (including virtual goods such as top-
up points for mobile services, games, transportation, etc.)
in 213 categories which were bought at least once and
921,211 purchasing actions in total. In the last month, we
used A/B testing [34] to compare the recommendation qual-
ity of TransRec and CTransRecct on the recommendation
task after 6,000 last actions (i.e., the last action before the
customer moves to checkout): the system randomly showed
the top-1 recommendation result from either TransRec or
CTransRecct on the screen at checkout, i.e., 3,000 out of 6,000
recommendations were made based on TransRec, and the
other 3,000 recommendations were from CTransRecct. We
simply measured the percentage that the customer took the
recommendation as the success rate.

TransRec achieved a success rate of 4.12%, while
CTransRecct had a success rate of 5.41%. This result shows
that the proposed CTransRec model has a better perfor-
mance than previous translation based recommendation
models in a real scenario. Note that a different experimental
task like, what we did in Secs. 4.2, 4.3, 4.4 and what was
done in previous work [2], predict the last action, not the
item to be recommended at checkout. For such a problem,
the success rate can be higher, because in our case the cus-
tomer might have already picked all items in her shopping
list when moving to checkout and buying more items at
this stage could be difficult. However, the goal for the test
is to measure the ability of the models to increase Alpha’s
sales and we set the prediction target to the recommended
item at checkout that customer may be willing to buy. In
addition, we did not provide discount for the recommended
item, which is a typical promotion strategy used in many

TABLE 4
Predictors of sequential recommenders

Method Predictor Definition

FPMC

Prob(j|u, i)

mT
unj + bTj vi

FPMC-LR mT
unj + bTj vi, j ∈ Ni

FPMC-LBP mT
unj + bTj vi + ρd−1

j,i

PRME −
(
α · ||mu − nj ||22 + (1− α) · ||yi − yj ||22

)
HRM soft

(
nTj · agg(mu, Nu

t ), Nu
t

)
Fossil

∑
j′∈Iu ms

j′
Tnsj + (δ + δu)bTj vi

TransRec βj − ||pi + qu − pj ||2
CTransRec βj − eλ(tj−ti)||Mu,ipi + qu −Mu,jpj ||2

FPMC-LBPR Prob(cj |u, ci) mT
un

c
j + bcj

Tvci

convenience stores, in order to show that the sale increase
comes only from the successful prediction.

5 RELATED WORK

Since the subject of this paper is sequential recommenda-
tion, we divide previous works into two categories: general
recommenders and sequential recommenders.

5.1 General Recommenders
Traditional recommender systems do not consider sequen-
tial behaviors and they are typically based on collabo-
rative filtering, especially matrix factorization (MF) [34].
MF models user preferences and item properties by fac-
torizing the user-item interaction matrix into two low-
dimensional latent matrices. Due to its effectiveness on
large-scale data [35], MF has been successfully deployed in
practice. The cold-start problem (i.e., data sparsity), where
historical data is not available for new users or items, is
one of the most challenging issues in recommender sys-
tems [36, 37, 38]. One solution to alleviate this problem
is to incorporate additional context features (e.g., social
network [39, 40], user grouping data [41], relationships in
a graph [42], locations of users and items [43] and review
text [44, 45]) into MF. However, it is hard to use general rec-
ommenders for sequential recommendation tasks directly,
since user sequential behaviors should also be modeled [5].

5.2 Sequential Recommenders
Sequential recommender systems typically rely on either
Markov Chains (MC) [1] or neural networks (e.g., RNNs and
CNNs) [6, 46] to capture sequential patterns and predict the
target user’s next action based on his/her previous action(s).

MC models sequential behavior by learning a transition
graph over items. Tab. 4 summarizes how these models
define the predictor (i.e., the probability Prob(j|u, i) that
user u transits from the previous item i to the next item j
or the probability Prob(cj |u, ci) that user u transits from
previous item category ci to next category cj). Rendle et al.
[1] proposed FPMC which subsumes both MF and MC and
its predictor consists of the inner product of user and item
factors mu, nj from MF and the inner product of the factors
of previous item vi and next item bj from MC. Along this
line, several approaches have been proposed for sequential
recommendation. FPMC-LR [3] extends FPMC, by using
a cube consisting of users, locations and neighborhood
locations (i.e., Ni is the neighborhood locations of location
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i in Tab. 4) for next-POI recommendation. Having the same
motivation, FPMC-LBP [21] added spatial constraints to
FPMC for next-POI recommendation. Constraint term ρd−1

j,i

in FPMC-LBP indicates the spatial preference of user u to
visit a POI j at distance dj,i far away from the previous
POI i; ρ is a learned parameter. Then, an intermediate latent
pattern layer is used together with the predictor to capture
the pattern-level preference. FPMC-LBP also considers the
influence of time. Compared to CTransRec which adopts
numerical variables and can model the influence of various
time intervals, FPMC-LBP utilizes categorical variables for
time (e.g., days of the week) and can only model coarse-
grained sequential recommendation. FPMC-LBPR [22] ex-
tends FPMC with Listwise Bayesian Personalized Ranking
for the next-category recommendation. The item factors n,
b and v in FPMC are replaced by category-level factors nc,
bc and vc, respectively. After the next category is predicted,
next target item is chosen among the items belonging to
this category. PRME [4] replaces the inner product in FPMC
by Euclidean distance and the two components for user-
item interaction and item-item interaction are weighted
through linear interpolation. Each item is encoded by a
low-dimensional vector y in the metric space. HRM [5]
extends FPMC by adopting two-step aggregation operations
agg (one step can be either average pooling or maximum
pooling) over item factors in recent actions Nu

t and user
factors mu. The inner product of nj and the aggregated
item representation is passed into a softmax function soft
as the predictor. Fossil [17] is a similarity-based sequential
recommendation model which uses item-item similarity
(factorizing into two item latent matrices Ms and Ns)
instead of user-item interaction in the cube. Like PRME, the
predictor of Fossil is also weighted using δ + δu, where δ is
a global parameter and δu is associated with u. Although it
does not exactly belong to the FPMC family, STELLAR [47]
also models cubical interactions 〈user, location, time〉 via
tensor factorization.

With the recent advances in deep learning, there are
many models considering using neural networks in sequen-
tial recommendation. DREAM [48] applies RNNs in se-
quential recommendation and GRU4Rec [6] adopts GRU to
model click sequences for non-personalized session-based
recommendation. Later, Donkers et al. [49] modified GRU
and Quadrana et al. [15] adopted hierarchical RNNs so that
personalized sequential recommendation can be modeled.
Zhu et al. [50] introduced Attention-GRU into a sequential
recommender for ranking brands. To capture both long-term
and short-term user preferences, there are several works
considering using LSTM. Wu et al. [7] utilized LSTM to
predict future behavioral trajectories. Phased LSTM [27]
considers incorporating time information in addition to
sequential order into LSTM. Zhu et al. [28] argued that
Phased LSTM only captures the timestamps of the indi-
vidual actions, rather than the time intervals between con-
secutive actions; hence, they proposed Time-LSTM, which
also considers the time intervals. Other approaches consider
more additional contextual information (e.g., knowledge
bases [51] and video [52]) when designing RNN-based tech-
niques. Tuan and Phuong [46] proposed to use 3D CNNs
and utilize content features such as item descriptions and
item categories. Caser [8] embeds a sequence of recent items

as an image and then adopts CNNs to learn the features.
As shown in our experiments and in the literature [10,

11], traditional MC based approaches do not offer high-
quality recommendations, while neural network based
models do not provide fast recommendations. TransRec [2,
13] is a translation based recommender for sequential
recommendation. TransRec borrows the ideas behind the
TransE KG completion method [18] and models each user
as the ‘translation’ between the previous item bought by
her and next item to be chosen by her. Then, a similar
objective function as the one used in TransE is injected
into FPMC as the predictor. TransRec yields much better
results compared to previous approaches and scales to large
datasets [13], although it cannot handle complex users like
our CTransRec. Similar to TransRec, which adopts the idea
of word embedding, Geo-Teaser [53] is a POI recommender
inspired by the success of word embedding. Geo-Teaser can
capture contextual information in check-in sequences.

6 CONCLUSION

In this paper, we propose CTransRec, which utilizes aux-
iliary information (item category and timestamp) in rec-
ommender systems to improve the performance of sequen-
tial recommendation. CTransRec aims at handling complex
users in its translation based model. The improvement of
CTransRec comes from not only the additional information
used in training but also the fact that CTransRec models
complex translations well via category-specific projection
and temporal dynamic relaxation. The superiority of CTran-
sRec over existing methods is twofold:
1) CTransRec gives better recommendations for complex

users, compared to existing translation based recommen-
dation models.

2) The runtime cost of CTransRec is roughly two times
higher compared to the existing translation based method
and CTransRec scales well on large data in practice.

In the applications of sequential recommendation, there
typically exists textural information (e.g., reviews [45]), spa-
tial information (e.g., trajectory [54]) and social information
(e.g., social tags [55]). In the future, we plan to unify the
predictor in a more general form where any side information
can be incorporated into CTransRec for handling complex
users, in order to further improve the quality of sequential
recommendation.
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