
1

Multi-task Learning for Recommendation over
Heterogeneous Information Network

Hui Li, Yanlin Wang, Ziyu Lyu, and Jieming Shi

Abstract—Traditional recommender systems (RS) only consider homogeneous data and cannot fully model heterogeneous
information of complex objects and relations. Recent advances in the study of Heterogeneous Information Network (HIN) have shed
some light on how to leverage heterogeneous information in RS. However, existing HIN-based recommendation models assume HIN is
invariable and merely use HIN as a data source for assisting recommendation, which limits their performance. In this paper, we
propose a multi-task learning framework, called MTRec, for recommendation over HIN. MTRec relies on self-attention mechanism to
learn the semantics of meta-paths in HIN and jointly optimizes the tasks of both recommendation and link prediction. Using a Bayesian
task weight learner, MTRec is able to achieve the balance of two tasks during optimization automatically. Moreover, MTRec provides
good interpretabilities of recommendation through a “translation” mechanism which is used to model the three-way interactions among
users, items and the meta-paths connecting them. Experimental results demonstrate the superiority of MTRec over state-of-the-art
HIN-based recommendation models, and the case studies we provide illustrate that MTRec enhances the explainability of RS.

Index Terms—Recommender Systems, Heterogeneous Information Network, Multi-task Learning.

F

1 INTRODUCTION

T RADITIONAL recommender systems (RS) rely on col-
laborative filtering (CF) methods, especially matrix

factorization (MF) [1], to characterize the historical user-
item interactions (i.e., ratings) and offer recommendations.
However, CF-based approaches suffer from cold-start and
data sparsity problems. The system lacks rich interaction
information for many users/items, which downgrades its
performance. With the development of web services, var-
ious types of data (e.g., text, image, location and social
network) become available in RS [1] and researchers start
to consider incorporating such auxiliary information into
recommendation models in order to alleviate the cold-start
and data sparsity problems. On the other hand, the rich
side information raises new challenges for RS. Because of
the heterogeneous nature of the real world, auxiliary data
typically contains different objects with multiple types of
interactions among them. Traditional recommendation ap-
proaches only consider homogeneous data and cannot fully
model heterogeneous information in modern RS.

Due to the importance of heterogeneity in real-world
applications, researchers have paid extensive attention to
the study of heterogeneous information network (HIN). In
HIN, objects are of different types, and links among objects
represent different relations (i.e., interactions). Based on the
fusion of heterogeneous information from HIN, various data
mining tasks can be exploited, e.g., similarity search, clus-
tering, classification and link prediction [2]. Recent advances

• Hui Li is with School of Informatics, Xiamen University, Xiamen, Fujian,
China. E-mail: hui@xmu.edu.cn.

• Yanlin Wang is with Microsoft Research Asia, Beijing, China. E-mail:
yanlwang@microsoft.com. She is the corresponding author.

• Ziyu Lyu is with Shenzhen Institutes of Advanced Technology, Chi-
nese Academy of Sciences, Shenzhen, Guangdong, China. E-mail:
zy.lv@siat.ac.cn.

• Jieming Shi is with School of Computing, National University of Singa-
pore, Singapore. E-mail: shijm@nus.edu.sg.

in the study of HIN [2] have also shed some light on how
to utilize heterogeneous data in RS and HIN-based RS have
attracted much attention [3, 4, 5, 6, 7]. To better depict user
preferences and item properties in RS, HIN-based recom-
mendation approaches learn the semantic relations behind
different types of interactions using meta-path [8] or meta-
graph [9] (also called meta-structure [10]). The advantages of
HIN-based recommendation models over traditional meth-
ods are twofold. Firstly, HIN-based recommendation meth-
ods are able to model the complex interactions between
different objects. Characterizing and using such information
is the key to improve the quality of recommendation since
interactions among different objects affect users’ behaviors,
especially when users make purchasing decisions. More-
over, HIN-based recommendation approaches typically har-
ness similarities based on meta-path/meta-graph [11] or the
attention mechanism [6] to distinguish different parts of
HIN (e.g., path or subgraph) according to their importance
to users’ behaviors. Consequently, HIN-based recommenda-
tion approaches provide a way to understand which piece of
information affects recommendation results and are of great
value to Explainable Recommender Systems [12].

Although HIN-based approaches have exceeded tradi-
tional models on both performance and interpretability,
there are still some limitations of current HIN-based RS.
A tremendous amount of work relies on leveraging meta-
path/meta-graph based similarity [3, 11, 13, 14, 15] to
improve the quality of recommendation. To obtain such
similarity, HIN has to be represented as a graph structure,
and then substructures like meta-path or meta-graph can
be extracted from it, for the computation of the similarity.
However, the high computational complexity [16] of simi-
larity computation hinders these methods from being fully
deployed in real large-scale HIN [7]. A compromise (e.g.,
limiting the length of meta-path [8]) has to be struck at the
sacrifice of inaccurate similarity. Moreover, similarity based

2

on meta-path/meta-graph may not fully reflect the latent
features of users and items in HIN [7].

With the surge of research on network embeddings [16],
some researchers start to consider utilizing node embed-
dings to overcome the limitations of similarity-based meth-
ods. Embedding based methods efficiently represent HIN
in a low-dimensional space while preserving the semantic
meanings. The node embeddings are either learned inde-
pendently for subsequent use in MF [7] or constitute the
representations in a neural network based model [6]. How-
ever, embedding based methods also have their limitations:
(1) HIN is supposed to be invariable in these methods and
the information flow between HIN and the recommendation
module is monodirectional. In other words, HIN will not get
updated in the lifecycle of RS, and it is solely used as a data
source for assisting recommendation. (2) Moreover, HIN is
keeping growing. The increase of the data in RS brings new
user-item interactions and item-item relations to HIN. The
enhanced HIN can further improve the recommendation.
Therefore, there exists a mutual effect between HIN and
recommendation. Nevertheless, existing approaches merely
optimize recommendations, ignoring that there are other
relevant tasks (e.g., modeling the dynamic growth of HIN)
and learning multiple tasks jointly may further improve the
generalization performance of all the tasks.

Aiming at solving the issues above, we propose a Multi-
Task learning framework for RECommendation over HIN
(abridged as MTRec) in this paper. Our contributions are
summarized as follows:

• We design a meta-path based recommendation model
which mostly relies on the attention mechanism. By uti-
lizing self-attention, the importance of each ingredient in
the meta-path can be identified during the fine-grained
learning.

• We model the meta-path as the “translation” from a user
to an item in a heterogeneous way to depict the three-
way interactions among users, items and the meta-paths
connecting them. The translation based three-way mod-
eling improves not only the performance but also the
interpretability of the recommendation.

• For the first time, multi-task learning is introduced into
HIN-based RS. We select link prediction, one task for
modeling the dynamics of the network, as the auxiliary
task and design a multi-task learning framework which
optimizes both the recommendation task and the link
prediction task in HIN.

• The balance of main and auxiliary tasks is automatically
achieved using a Bayesian task weight learner during joint
optimization. The Bayesian task weight learner can benefit
not only the HIN-based recommendation task in this
paper but also other tasks involving multi-task learning
and negative sampling.

We conduct extensive experiments on real public data
sets which show that MTRec has a superior performance
compared to the state-of-the-art models on the task of HIN-
based recommendation. Further, MTRec enhances the inter-
pretability of recommendation via its “translation” mecha-
nism and helps us better understand the recommendation
results. Moreover, MTRec is able to provide predictions for
the missing links in HIN, which is one task for modeling the

dynamic growth of HIN. Therefore, MTRec is of high prac-
tical value compared to previous HIN-based recommenda-
tion methods which merely consider the recommendation
task.

The rest of this paper is organized as follows. Sec. 2
provides the background. We present the details of MTRec
in Sec. 3. Experiments on real data sets that demonstrate the
effectiveness and the interpretability of MTRec are reported
in Sec. 4. Sec. 5 discusses the related work. Sec. 6 concludes
the paper and provides directions for future work.

Notation: We use lower-case fonts for scalars, bold
lower-case fonts for vectors and bold upper-case font for
matrices. For example, p is a scalar, p is a vector and P is a
matrix.

2 PRELIMINARIES

In this section, we introduce relevant concepts used in this
paper. A recommender system consists of m users and n
items and their interactions are represented by a user-item
interaction matrix R ∈ Rm×n with each non-zero element
ri,j = 1 indicating an observed interaction between user i
and item j (e.g., i has rated or viewed j). Heterogeneous
Information Network is defined as follows [8]:

Definition 1 (Heterogeneous Information Network). HIN is
denoted as a directed graph G = {V, E} where V is an
object set and E is a link set. A HIN is also associated
with an object type mapping function φ : V → A and
a link type mapping function ψ : E → R. A and R are
sets of object types and link types where |A+R| > 2.

To describe the complex HIN, a network schema is pro-
vided for better understanding the structures and relations
from meta level:

Definition 2 (Network Schema). Network schema, defined
as S = {A,R}, is a meta template for a HIN G = {V, E}
with object and link mapping functions φ and ψ.

In HIN, two objects can be linked through different
semantic paths which are defined as meta-paths:

Definition 3 (Meta-path). A meta-path ρ is a path defined
on a network schema S = {A,R}, and is denoted in the
form of A1

R1−→ A2
R2−→ · · · Rl−→ Al+1, which defines a

composite relation R = R1 ◦R2 ◦ · · · ◦Rl between object
types A1 and Al+1, where ◦ represents the composition
operator on relations.

Since there are multiple objects for each object type, a meta-
path ρ can produce multiple meta-path instances. We use
h ∈ ρ to indicate that h is an instance of meta-path ρ.
A meta-path (or meta-path instance) with a length of l
indicates there are l + 1 object types (or objects) and l links.

By incorporating the idea of HIN into the recommenda-
tion, RS can better depict user preferences and item proper-
ties. We redefine the recommendation task in the setting of
HIN:

Definition 4 (HIN-based Recommendation Problem). Given
the user-item interaction matrix R and the correspond-
ing HIN G in the system, for each user u, HIN-based RS
aims to offer a recommendation list of k items that u is
most interested in.

3

Some recent works have considered the rating prediction
task in the setting of HIN-based RS [5]. Since top-k rec-
ommendation is more important and practical, we target
at solving the problem defined in Definition 4.

Link prediction, which is a traditional data mining task,
is introduced as an auxiliary task into MTRec in order
to enhance the recommendation task under a multi-task
architecture. Link prediction for HIN can be modeled from
a perspective of sequential modeling, based on meta-paths.
We give the definition of the auxiliary task as follows:

Definition 5 (Link Prediction for HIN). Each
instance h of meta-path ρ, which has a length
of l, can be segmented into l links: h =
{〈sρ,h,1, sρ,h,2〉, 〈sρ,h,2, sρ,h,3〉, · · · , 〈sρ,h,l, sρ,h,l+1〉},
where sρ,h,b is the b-th object in h. The link prediction
problem for HIN can then be defined as a prediction
problem of the o-th object in a meta-path instance, given
its preceding o− 1 objects.

3 MTREC

In this section, we introduce the proposed framework
MTRec for multi-task learning in HIN-based RS.

3.1 Overview of Our Model

HIN is extremely spare, and there are many missing links
(i.e., edges between different types of objects) in HIN-based
RS for two reasons:
• There is a large number of items in the system. It is

unlikely for one user to interact with most items. Con-
sequently, a tremendous amount of links from users to
other objects in HIN, which represent user interactions,
are missing.

• Furthermore, a large part of the information for new items
has not been collected in RS and the relations (i.e., links)
from the new item to other objects do not appear in HIN.

The sparsity of HIN prevents it from assisting the rec-
ommendation task. Additionally, HIN is growing daily as
users interact with items (e.g., view a webpage, buy a
product or listen to music) and more information is collected
by the system (e.g., product attributes). Assuming HIN is
invariable when modeling HIN-based RS is unreasonable.
Nevertheless, the sparsity and dynamics of HIN in HIN-
based RS are commonly ignored in previous works.

To address these problems, we introduce an auxiliary
task, link prediction for HIN, into MTRec and design the
architecture of MTRec using multi-task learning. Link pre-
diction of the network is a traditional data mining task.
HIN-based recommendation task and link prediction for
HIN task are relevant as they share some features of meta-
paths. MTRec employs multi-task learning which introduces
several benefits to HIN-based recommendation:
• Link prediction models the dynamic growth of HIN and

it not only helps enrich the information of HIN (thus it al-
leviates the sparsity problem and information from meta-
paths which do not bridge the target user and candidate
items are also considered in MTRec), but also increases the
performance of the recommendation task through sharing
features and joint optimization in a multi-task manner.

Embedding

Layer

Self-attention

Layer

MLP

S
el

f-
a
tt

en
ti

o
n

L
a
y
er

.

...
.

..
......
.

..
.

Self-attention

Layer

...

Pooling

..



Translation

..
.

..
.

rec

path

rec path

UABI UCDI
UAB UCD

U I

 

Embedding

Layer

Embedding

Layer

Embedding

Layer
...

U IA B

Fig. 1: Architecture of MTRec. “⊗” is the operator of
Hadamard product and “�” denotes the operator of con-
catenation. “U” and “I” represent users and items, respec-
tively. “A”, “B”, “C” and “D” are four different object types.

• Multi-task learning helps the model to focus on most
essential features, as the auxiliary task will provide ad-
ditional evidence for the relevance or irrelevance of those
features.

• Multi-task learning enhances the generalization ability of
MTRec as it biases the model to prefer features that both
the main task and the auxiliary task prefer.

Fig. 1 illustrates the overall architecture of MTRec that
consists of two components. The left component (Sec. 3.2) is
the self-attentive recommendation module, which provides
top-k recommendations to users based on the meta-paths
connecting users and candidate items. The right component
(Sec. 3.3) is designed for the auxiliary task, link prediction
in HIN, which is one of the tasks modeling the dynam-
ics of HIN. The two modules share the underlying object
embedding layer. Additionally, each component maintains
one private feature space and shares a common feature
space of meta-paths (Sec. 3.4.1) for multi-task learning. The
private features in each component and the shared features
are learned through the private self-attention layer in each
component and a public self-attention layer, respectively.
Finally, the two tasks are automatically balanced using a
Bayesian task weight learner during the joint optimization
(Sec. 3.4.2).

4

3.2 Main Task: HIN-based Recommendation
In this section, we will elaborate on the self-attentive recom-
mendation module in MTRec.

3.2.1 Self-attentive Meta-path Modeling
Unlike previous embedding based approaches that leverage
neural networks like CNN to learn the representations of
meta-paths [6], MTRec mostly relies on a new concept,
self-attention [17], to capture the complex semantics in
meta-paths. Like other attention mechanisms which com-
pute a weight distribution on the input sequence and as-
signs higher values to more relevant elements in the se-
quence [18], self-attention endows the model with the ability
to focus on the most important parts of the sequential data
and enhances the interpretation of the model. Differently,
self-attention mechanism learns the attention weights by
matching a sequence against itself. Inspired by the success
of self-attention in various NLP tasks, especially machine
translation [17], we adopt self-attention to model meta-paths
in HIN-based RS which requires a sophisticated design
as HIN-based recommendation is quite different from the
machine translation task. Compared to most neural network
based recommendation methods which use the attention
mechanism as a supplemental component to enhance the
original neural architecture (e.g., RNN or CNN), MTRec
uses self-attention as its backbone in most part of the learn-
ing procedure.

The self-attentive meta-path modeling method used in
MTRec can be decomposed into the following parts.

Object Embedding Layer. Since this paper focuses on the
pure HIN-based CF setting, we only use the identity (i.e., ID)
of each object in HIN as the input features. The input feature
(e.g., the id of the object iwith object type t) is represented as
a binarized sparse vector g(t)

i with one-hot encoding. Above
the input layers are the embedding layers for all object
types. Each embedding layer is a fully connected layer that
projects the sparse one-hot representation g

(t)
i to a dense

d-dimensional vector s
(t)
i to represent the corresponding

object i with type t in HIN.

Meta-path Embedding Layer. As introduced in Sec. 2,
each meta-path consists of a sequence of object types. We
represent each meta-path instance by concatenating the em-
beddings of the objects in the sequence. Given an instance h
of meta-path ρ with length l−1, its embedding Pρ,h ∈ Rd×l
is the stack of the embeddings for the objects in h:

Pρ,h =


s
(1)
ρ,h,1 s

(1)
ρ,h,2 · · · s

(1)
ρ,h,l

...
... · · ·

...
s
(d)
ρ,h,1 s

(d)
ρ,h,2 · · · s

(d)
ρ,h,l

 (1)

where s
(f)
ρ,h,o indicates the f -th dimension of the o-th object

in the meta-path instance h. Note that s is used to indicate
object embedding in this paper with two usages: 1) s

(f)
ρ,h,o

will be used when depicting its position in a meta-path; 2)
When emphasizing the object id and object type, s(t)i will be
used.

Self-attention Layer. A typical attention technique [18]
maps a sequence of d-dimensional vectors, i.e., the key K,

to the attention weights A. In this process, another input
element Q called query is used as a reference and the
attention technique computes the compatibility between the
key and the query to give emphasis to the elements in the
keys which are relevant to the query. Then, the compatibility
is passed through a distribution function to obtain the
attention weights A. Finally, the attention weight is applied
on another input element V, the value, to obtain the refined
representations of the key. In self-attention, the key, query
and value refer to the same input sequence and this is how
the name self-attention comes from.

In our model, the inputs of the key K, the query Q and
the value V are the same and compose of the meta-path
instance embeddings Pρ,h. They are firstly projected to the
same space with shared parameters:

Kρ,h = WKPρ,h, Qρ,h = WQPρ,h, Vρ,h = WVPρ,h (2)

where WK ,WQ,WV ∈ Rd×d are learnable weight matri-
ces for K, Q and V, respectively.

Then, the affinity values Aρ,h ∈ Rl×l (i.e., attention
weights) can be obtained as follows:

Aρ,h = softmax
(KT

ρ,h ·Qρ,h√
d

)
(3)

where
√
d is used as the scaling factors to avoid the negative

effects of small gradients. Each element ac,e ∈ A reflects
the relevance of the e-th object in the key sequence to the
c-th object in the query sequence. It is worth noting that
the key and the query is the same sequence in our model,
i.e., one meta-path embedding. Consequently, the attention
weight in Eq. 3 is computed by the self-matching of an input
sequence.

After that, the refined instance embedding vector p̂Tρ,h ∈
Rd of instance h for meta-path ρ can be obtained by com-
bining the value V and attention weights A:

p̂
(1)
ρ,h = flatten

(
Vρ,hAρ,h

)
p̂
(2)
ρ,h = tanh

(
Wpp̂

(1)
ρ,h + bp

) (4)

where “flatten(·)” is the flattening operator which reshapes
the d × l inputed matrix to (d × l)-dimensional vector, Wp

and bp denote the weight matrix and the bias vector, and
we use the hyperbolic tangent function as the activation
function.

Our model further applies a mean pooling operation
over the embeddings of all the meta-path instances for the
meta-path ρ to derive the corresponding meta-path embed-
ding m̂ρ ∈ Rd:

m̂ρ = mean (
∑
h∈ρ

p̂ρ,h), (5)

where “mean(·)” is the mean pooling operation that extracts
the average value of each dimension for embeddings of all
meta-path instances.

After reviewing the whole process in self-attention layer,
we can find that the position of each object in the meta-path
instance does not affect the formulation for the refined meta-
path embedding vector m̂ρ. In other words, permuting the
order of objects in one meta-path and the resulted meta-
path will have the same representation as the original one.

5

To avoid such unreasonable representations, we inject a
learnable position embedding G ∈ Rd×l into Pρ,h before
projecting it to Kρ,h, Qρ,h and Vρ,h in Eq. 2 to help our
model retain the sequential patterns of meta-path instances:

Pρ,h = Pρ,h + G, (6)

where each element in the i-th row of G is initialized with
the value i. Through the injected positional embedding G,
our model is aware of the position of each object in the
meta-path. Unlike [17] where a fixed position embedding is
used, we find that applying a learnable position embedding
makes the results more robust.

3.2.2 Modeling Three-way Interactions in Recommender

Most HIN-based RS, which rely on meta-paths, only charac-
terize two-way user-item interactions, and seldom consider
the mutual effect between the meta-path and the involved
user-item pair in an interaction. Features learned from meta-
paths are used to enhance user and item representations
in recommendation models. Though these methods achieve
performance improvements to some extent, they are unable
to provide good interpretations about why meta-path and
which meta-path helps improve the quality of recommenda-
tion due to the lack of modeling interactions among users,
items and meta-paths connecting them [6].

To model the probability that a user i will accept
an item j given the meta-paths connecting them, MTRec
adopts the concept of “translation” which is prevalently
used in knowledge graph embedding [19, 20]. In a knowl-
edge graph, an edge can be represented as a triple
〈head entity, relation, tail entity〉 where head and tail enti-
ties are the nodes, and relation is the edge between them.
Translation-based knowledge graph embedding [21] mod-
els the relation embedding r as the translation from head
embedding h to tail embedding t: h+r ≈ t. Inspired by the
success of translation-based knowledge graph embedding
approaches, we design a prediction layer for HIN-based
recommendation with the idea that the meta-path can be
viewed as the translation from the user to the item. The
prediction layer for recommendation is defined as follows:

ei,ρ,j = relu
(
We

(
s
(user)
i + m̂ρ − s

(item)
j

)
+ be

)
ri,j = σ

(
−

∑
ρ∈Path(i,j)

||ei,ρ,j ||2
) (7)

where We and be are the learnable parameters, Path(i, j)
denotes all the meta-paths connecting user i and item j, “|| ·
||2” indicates the vector norm, ri,j indicates the likelihood
that user i will interact with item j, and σ(·) is the sigmoid
function.

If a meta-path ρ connecting a user i and an item j indi-
cates a high likelihood that iwill interact with j, then s

(item)
j

should be close to s
(user)
i + m̂ρ. Different from translation-

based knowledge graph embedding where the embeddings
of head and tail entities belong to the same space, user
embedding s

(user)
i , meta-path embedding m̂ρ and item

embedding s
(item)
j in Eq. 7 belong to three different vector

spaces in MTRec. Therefore our model employs a more

heterogeneous translation mechanism for modeling three-
way interactions compared to translation-based knowledge
graph embedding approaches.

One by-product of harnessing “translation” to model
three-way interactions is the reinforcement for the inter-
pretability of HIN-based recommendation. Observed from
Eq. 7 that the L2 distance between the representation of a
meta-path ρ (i.e., m̂ρ) and s

(item)
j − s

(user)
i , where j is an

item that user i is very likely to accept (i.e., ri,j is large),
should be small if ρ plays a vital role in marking j as a
positive candidate for the recommendation. Therefore, we
can calculate the L2 distance between the representation of
each meta-path connecting a ground-truth user-item pair
and the corresponding representation s(item) − s(user) (we
call it reference representation in this paper) to explain which
meta-path contributes to the recommendation most.

3.2.3 Loss Function of HIN-based Recommendation
We adopt negative sampling to train our model for the
HIN-based recommendation task. Specifically, we uniformly
sample nrec items for each user i (i.e., negrec(i)) in the
training set in each epoch. User i has not interacted with any
item in negrec(i) in the training set. We modify the binary
cross entropy loss as the objective function:

Lrec(θrec) = −
∑

〈i,j〉∈Trec

(
log ri,j+

∑
j′∈negrec(i)

log (1− ri,j′)
)
,

(8)
where Trec indicates the training data for the recommenda-
tion task, θrec is the parameters for the model, and 〈i, j〉
denotes that user i has interacted with item j.

3.3 Auxiliary Task: Link Prediction for HIN
Link prediction of a network is a tradition data mining task
and various methods, either catered for HIN or not, can
be adapted in our multi-task framework. Since we already
harness self-attention mechanism to modeling the represen-
tations of meta-paths in HIN-based recommendation, we go
along this direction in the task of link prediction for HIN
(illustrated in Definition 5) for ease of exploration.

Similar to the recommendation module, we first obtain
the meta-path instance embedding Pρ,h for instance h of
meta-path ρ and enhance it using the learnable positional
embedding G as shown in Eq. 1 and Eq. 6. After that, Pρ,h is
passed through a self-attention layer to retrieve the refined
embedding matrix P̂ρ,h ∈ Rd×l of the meta-path instance h:

Aρ,h = softmax
(KT

ρ,h ·Qρ,h√
d

)

P̂ρ,h = Vρ,hAρ,h =


ŝ
(1)
ρ,h,1 ŝ

(1)
ρ,h,2 · · · ŝ

(1)
ρ,h,l

...
... · · ·

...
ŝ
(d)
ρ,h,1 ŝ

(d)
ρ,h,2 · · · ŝ

(d)
ρ,h,l


(9)

where ŝ
(f)
ρ,h,o is the f -th dimension of the output representa-

tion for the o-th object. However, directly using ŝρ,h,o as the
features for predicting the o-th link will be erroneous [22].
Due to the nature of sequences, the model should con-
sider only the first o objects when predicting the o-th link.
However, we can observe that the o-th output of the self-
attention layer contains embeddings of subsequent objects.

6

Therefore, we modified the attention mechanism in Eq. 9 for
link prediction module by using masks to forbid all the links
from Qρ,h,o to Kρ,h,f where f > o. This way, ŝρ,h,o can be
viewed as the features learned based on first o objects in an
instance.

To predict the o-th link in a meta-path instance, we
estimate the likelihood of each candidate object c for the
(o + 1)-th object based on the first o objects in the instance
h. MTRec employs a product layer for the estimation:

qh,o+1,c = σ(̂sTρ,h,o · sc), (10)

where sc is the embedding of the candidate object c that
has the object type for the (o+ 1)-th object in the meta-path
schema for ρ, and σ(·) is the sigmoid function.

3.3.1 Loss Function of Link Prediction.

Similar to the recommendation task, we employ negative
sampling to cope with the optimization of the link predic-
tion task. For each meta-path instance h ∈ ρ, we uniformly
sample npath objects (i.e., negpath(ρ, h, t)) for each step t in
h in each epoch. During sampling, any negative sample in
negpath(ρ, h, t) should not be the direct subsequent object for
the (t− 1)-th object sρ,h,t−1 in any instance of ρ. We modify
the binary cross entropy loss as the objective function:

Lpath(θpath) =−
∑
ρ∈Tpath

∑
h∈ρ

∑
2≤t≤|ρ|

(
log qh,t,ct

+
∑

j′∈negpath(ρ,h,t)

log (1− qh,t,j′)
)
,

(11)

where θpath are the parameters of the model for link predic-
tion, Tpath is the training data of link prediction task, |Tpath|
is the number of all meta-path instances, ct is the id of the
ground-truth object at t-th step of h, and |ρ| indicates the
number of object types contained in the meta-path ρ.

3.4 Multi-task Learning for HIN-based Recommender

In this section, we explain how MTRec can be optimized in
a multi-task manner.

3.4.1 Feature Sharing

One key idea of multi-task learning is that features learned
by different tasks should be divided into private and shared
spaces, depending on whether parameters of some compo-
nents should be shared. Fig. 2 depicts the private-shared
model we use for parameter sharing between the HIN based
recommendation task and the link prediction task.

For any meta-path instances h used either in recommen-
dation task or link prediction task, its private representation
and shared representation can be learned by passing it
through a private self-attention layer in each task and a
shared self-attention layer between two modules, respec-
tively. Each self-attention layer is defined in Sec. 3.2. The
final features for each task are the concatenation of private
representation and shared representation.

Self-Attention

Layer

Self-Attention

Layer

Self-Attention

Layer

...

...
path

rec

path

rec
.

.

...

...

Fig. 2: Private-shared model for multi-task learning. “�”
denotes the operator of concatenation.

3.4.2 Bayesian Task Weight Learner

Multi-task learning concerns the problem of optimizing
a model with respect to multiple objectives. A common
way to combine loss objectives of the two tasks, i.e., HIN
based recommendation and link prediction, is to perform a
weighted sum of the individual loss objective:

L = wrecLrec + wpathLpath. (12)

The harmony of the two tasks can be achieved through
setting different weight values of wrec and wpath for the two
tasks. A naive but prevalent way is to set the weights to
be equal for individual tasks. However, this workaround is
only valid when the tasks do not compete, which is rarely
the case. Different tasks need to be properly balanced so that
network parameters converge to robust shared features that
are useful across all tasks. Task imbalances impede proper
training because they manifest as imbalances between back-
propagated gradients. A task that is too dominant during
training, for example, will express that dominance by in-
ducing gradients which have relatively large magnitudes.
Searching and dynamically updating optimal weights dur-
ing optimization is a difficult and expensive process.

Inspired by the recent study which uses uncertainty to
weigh losses in multi-task learning [23, 24], we leverage
Bayesian modeling to derive the joint multi-task loss func-
tion and design a Bayesian task weight learner which can
automatically achieve the balance between the two tasks.

Similar to Kendall et al. [24], we introduce an assump-

tion 1
λ2

(
exp(xλ2) + 1

)
≈
(

exp(x) + 1
) 1
λ2 which becomes

an equality when λ → 1. Based on the assumption, we
can derive the following approximations for the sigmoid
function σ(·):

σ(
x

λ2
) =

exp(x
λ2)

exp(x
λ2) + 1

≈
1

λ2

(exp(x)

exp(x) + 1

) 1
λ2 =

1

λ2

(
σ(x)

) 1
λ2

1− σ(
x

λ2
) =

1

exp(x
λ2) + 1

≈
1

λ2

(1

exp(x) + 1

) 1
λ2 =

1

λ2

(
1− σ(x)

) 1
λ2

(13)

Now let us investigate the loss function shown in Eq. 8
for the HIN-based recommendation. Let x(i, j) be a user-
item interaction 〈i, j〉 and y(i, j) represents the label for
x(i, j) (1 if 〈i, j〉 is positive, otherwise 0). R

(
x
)

indicates
the outputs of MTRec for all x using Eq. 7 and rx(i,j) is
the probability of a specific interaction 〈i, j〉 being positive.
Then the binary classification likelihood can be defined as

7

follows:

Pr
(
y|R(x)

)
=

∏
〈i,j〉∈Trec

Pr
(
y(i, j)

∣∣rx(i,j))
=

∏
〈i,j〉∈Trec

(
σ
(
rx(i,j)

) ∏
j
′∈negrec(i)

(
1− σ

(
r
x(i,j

′
)

)))
.

(14)
Following Kendall et al. [24], we introduce a scalar α into

Eq. 14 to get a scaled version of the model output:

Pr

(
y
∣∣R(x), α

)
=

∏
〈i,j〉∈Trec

(
σ
(rx(i,j)

α2

) ∏
j
′∈negrec(i)

(
1−σ

(r
x(i,j

′
)

α2

)))
,

(15)
which can be interpreted as a Boltzmann distribution (i.e.,
Gibbs distribution) [24]. The input is scaled by α2 (often
referred to as temperature). Then the log likelihood can be
written as:

logPr
(
y
∣∣R(x), α

)
=

∑
〈i,j〉∈Trec

(
log
(
σ
(rx(i,j)

α2

))
+

∑
j
′∈negrec(i)

log
(

1− σ
(rx(i,j′)

α2

)))

≈
∑

〈i,j〉∈Trec

(
1

α2
log
(
σ
(
rx(i,j)

))
+

1

α2

∑
j
′∈negrec(i)

log
(

1− σ
(
r
x(i,j

′
)

))

− 2(nrec + 1) logα

)
=−

1

α2
Lrec(θrec)− 2(nrec + 1) · |Trec| · logα,

(16)
where we introduce the approximations in Eq. 13 to the
penultimate transition.

Similarly, we can obtain the log likelihood for the link
prediction task with a scalar β, since the objective for link
prediction in Eq. 11 has a similar form as the objective of
recommendation in Eq. 8:

logPr

(
y
∣∣Q(x), β

)
≈ −

1

β2
Lpath(θpath)−2(npath+1)·|Tpath|·l̄·log β,

(17)
where Q(x) indicate the outputs of MTRec on the inputs x
to the link prediction task using Eq. 10, y is the labels, |Tpath|
is the number of all meta-path instances, and l̄ is the average
length of meta-paths.

We maximize the log likelihood of MTRec in maximum
likelihood inference, while we minimize the joint objective
during optimization. Thus, the joint loss L can be formu-
lated as:
L(θrec, θpath) =− logPr

(
y
∣∣U(x)

)
=− log

(
Pr
(
yrec

∣∣R(xrec), α
)
· Pr

(
ypath

∣∣Q(xpath), β
))

=
1

α2
Lrec(θrec) +

1

β2
Lpath(θpath)

+ 2(nrec + 1) · |Trec| · logα

+ 2(npath + 1) · |Tpath| · l̄ · log β,
(18)

where U(x) = {R(xrec), Q(xpath)} is the outputs of MTRec
on the inputs x = {xrec, xpath}, and y = {yrec, ypath} is the
labels.

The joint objective can be seen as learning the relative
weights of the two losses. Small value of α will decrease the
contribution of Lrec, whereas large value will increase its
contribution. β has a similar impact on the contribution of
Lpath. Scales are regulated by the last two terms in Eq. 18.

This way, we provide an automatic mechanism to balance
the two tasks. Unlike Eq. 12 where the relative weights have
to be set manually, the weights α and β in the joint loss of
Eq.18 are automatically learned during optimization.

The Bayesian task weight learner is different compared
to previous works [23, 24], which introduce the idea of un-
certainty to automatically learn the task weights to balance
a regression task and a classification task without the negative
sampling strategy. It is nontrivial to design such a task weight
learner without the approximations we proposed. Negative
sampling strategy is a common training method used in
many machine learning tasks including general recommen-
dation [25] and knowledge graph embedding [19, 20]. The
Bayesian task weight learner can benefit not only the HIN-
based recommendation task in this paper but also other
tasks involving multi-task learning and negative sampling.

4 EXPERIMENTS

In this section, we conduct an experimental study using real
data sets to show the effectiveness of MTRec.

4.1 Experimental Settings
4.1.1 Data
We use data sets MovieLens1, LastFM2 and Yelp3 which are
widely used in previous studies about HIN-based recom-
mendation [6].

For the recommendation task, our evaluation focuses on
implicit feedbacks. LastFM contains users’ listening records
which can be transformed as implicit feedbacks and directly
used for our evaluation. For data sets MovieLens and Yelp,
we follow [6, 25] and treat a user-item rating as an inter-
action record. We select the same meta-paths as [6]. These
meta-paths contain at most 4 hops since long meta-paths
are likely to introduce noisy semantics [8]. Tab. 1 explains
the meaning of the notations used for these meta-paths. For
example, relations “User-Movie” and “Movie-Genre” are
denoted as “um” and “mg” in the following, respectively.
Thus, the meta-path “umgm” in MovieLens indicates “User-
Movie-Genre-Movie”.

For assessing the quality of HIN-based recommenda-
tion task, we randomly selected 80% user-item interactions
in each data set to be used for training; the remaining
20% interactions are held out for testing. We then use the
methodology in [6] to select meta-path instances connecting
users and items:

1) Firstly, user-item interaction matrix is factorized by
CCDPP4 [26], a matrix factorization method, to obtain
user and item feature vectors.

2) Based on user and item feature vectors, we compute
the top-50 most similar users/items for each user/item
and generate {uu, mm}, {uu, aa} and {uu} relations for
MovieLens, LastFM and Yelp, respectively. We adopt Pea-
son’s coefficient as the similarity measure. Other relations
exist in the original data. Given these relations (i.e., edges),
HIN can be constructed.

1. https://grouplens.org/datasets/movielens/100k/
2. https://grouplens.org/datasets/hetrec-2011/
3. https://www.kaggle.com/c/yelp-recsys-2013
4. https://github.com/Hui-Li/CCDPP

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/hetrec-2011/
https://www.kaggle.com/c/yelp-recsys-2013
https://github.com/Hui-Li/CCDPP

8

3) We leverage HIN2Vec5 [27], a representation learning
method for HINs, to retrieve representations for each
object in HIN.

4) Priority based random walk [6] is used to retrieve meta-
paths connecting user-item pairs which have interaction
records in the training data. The next object to visit is
selected based on the similarity between the representa-
tions of the current object and all the out-going similar
objects. Similarity threshold is set to be 0.9 for all data.
Additionally, we use a threshold of 0.8 to generate a
larger version of Yelp data which includes more meta-
path instances. We denote it by Yelp-L.

For evaluating the link prediction task, we also adopt the
priority based random walk to sample meta-path. Differ-
ently, the start object (user) and the end object (item) of the
sampled instance are not required to constitute a user-item
interaction in the data. Then, 80% meta-path instances are
randomly sampled for training and the remaining instances
are used for evaluation.

In addition to the explanation of notations, Tab. 1 shows
the statistics for all data sets used in both main task and aux-
iliary task. It is worth noticing that the meta-path instances
used in the main task is not the subset of the instances used
in the auxiliary task, though they are overlapping. Meta-
path instances for the auxiliary task may connect some user-
item pairs in which the user has not interacted with the
item, while instances for the main task connecting user-item
interactions.

4.1.2 Baselines

We compare the performance of the following approaches:
• BPR [28] is the Bayesian Personalized Ranking model that

minimizes the pairwise ranking loss for implicit feedback
• NeuCF [25] is the Neural Collaborative Filtering which

utilizes implicit feedback for top-k recommendation.
• NGCF [29] is the Neural Graph Collaborative Filtering

method which exploits the user-item graph structure by
propagating embeddings on it.

• VAES [30] is the Variational Autoencoders based Collab-
orative Filtering method, which generalizes linear latent-
factor models to a non-linear probabilistic latent-variable
model.

• NeuACF [31] is the Aspect-Level Deep Collaborative
Filtering approach which learns the aspect-level latent
factors through different meta-paths and fuse them with
an attention mechanism for top-k recommendation.

• FMG [3] is a meta-graph based method for rating predic-
tion in recommender system. Similar to [6], we modify
its optimization objective as pairwise ranking loss used in
BPR [28] for top-k recommendation.

• HERec [7] is a HIN based recommendation method which
adopts a meta-path based random walk strategy to gener-
ate meaningful object sequences for network embedding.
The embeddings are then fused and integrated into a MF
method for recommendation.

• MCRec [6] is a meta-path based model, which constructs
a three-way neural interaction architecture for recommen-
dation. CNN is used to extract meta-path embeddings

5. https://github.com/csiesheep/hin2vec

and a co-attention mechanism is leveraged for modeling
interactions among users, items and meta-paths.

• MTRecrec is our proposed approach for recommendation
task in HIN. It only contains the method introduced in
Sec. 3.2.

• MTReclp is the method introduced in Sec. 3.3 for the link
prediction task in HIN.

• MTRec is the complete framework for multi-task recom-
mendation in HIN. It optimizes both the tasks of HIN-
based recommendation and link prediction in HIN. Fea-
ture sharing and weighted loss illustrated in Sec. 3.4 are
used in the framework.

• MTRecn is similar to MTRec, except that a naive weighted
sum loss (Eq. 12) is used for multi-task learning. wrec and
wpath are set to be equal.

The learned representations (i.e., the output from Step
3 when selecting meta-path instances for evaluating HIN-
based recommendation) for each object in HIN by HIN2Vec
is utilized as the pre-trained features for MCRec. Our ap-
proach and BPR were implemented using PyTorch. Imple-
mentations for other methods are provided by their authors.

4.1.3 Evaluation
For a fair comparison, we follow the evaluation settings
in [6] for the recommendation task. For each user-item pair
in the test set, we randomly sample nrec negative test items.
The target user has not interacted with these negative items
before. For each user in the test set, we use all the items
he/she has interacted with in the test set and the corre-
sponding negative items to construct a test list. Then we
rank the list and the results are evaluated using Precision at
rank k (Prec@k), Recall at rank k (Recall@k) and Normalized
Discounted Cumulative Gain at rank k (NDCG@k).

For the auxiliary task, link prediction, we use a similar
evaluation protocol as the recommendation task. For each
meta-path instance with length l − 1 in the test set, we
predict the l-th object in the sequence based on the first l−1
objects. For each positive last object in an instance h ∈ ρ, we
sample npath negative objects which can not be the direct
subsequent objects for the (l − 1)-th object (i.e., sρ,h,l−1) in
any instance of ρ. For each user in the test set, we use all the
meta-path instances starting from him/her in the test set
and the corresponding negative objects to construct a test
list. We adopt Hit Ratio at rank k (HR@k), NDCG@k and
Mean Reciprocal at rank k (MRR@k) which are the measures
commonly used for sequential analysis [32] for evaluating
link prediction task.

Hyperparameters. For all methods, we set learning rate,
dimensionality d, training batch size, nrec and npath to
0.001, 128, 256, 20 and 100, respectively. Hypeparameters
of each baselines are set as suggested by their authors. All
methods are optimized using Adaptive Moment Estimation
(Adam) [33] and trained until convergence.

4.2 Experimental Results

4.2.1 Performance for HIN based Recommendation
Overall Performance. Tab. 2 illustrates the performance
of all methods for the recommendation on the four data
sets when evaluating using rank k = 10. The first row of

https://github.com/csiesheep/hin2vec

9

TABLE 1: Statistics of the data

Data Meta-Path Instance Relations (A-B) #A #B #A-B

Meta-Path Main Task Auxiliary Task Main Task Auxiliary Task

MovieLens

umgm 622,579 3,795,480 User-Movie (um) 943 1,682 8,159 152,261
umum 82,386 3,948,204 User-User (uu) 943 943 39,878 33,250
uuum 116,591 3,939,422 Movie-Movie (mm) 1,682 1,682 21,830 81,709

ummm 566,959 3,949,972 Movie-Genre (mg) 943 18 3,188 5,401

LastFM

uata 1,200,800 7,571,725 User-Artist (ua) 1,892 17,632 1,561 127,761
uaua 5,727 7,599,186 User-User (uu) 1,892 1,892 67,933 94,300
uuua 44,641 7,593,927 Artist-Tag (at) 17,632 9,718 52,615 155,325
uua 9,543 3,464,400

Yelp

ubcb 95,692 11,039,997 User-Business (ub) 45,981 11,537 9,031 360,242
ubib 1,900,681 10,947,136 User-User (uu) 45,981 45,981 4,003 2,100,970
ubub 143,546 11,039,943 Business-City (bi) 11,537 53 10,972 17,637
uub 15,033 4,538,526 Business-Category (bc) 11,537 449 3,341 46,458

Yelp-L

ubcb 456,590 29,439,828 User-Business (ub) 45,981 11,537 49,852 367,747
ubib 6,616,949 28,872,769 User-User (uu) 45,981 45,981 7,570 2,107,482
ubub 3,145,281 29,406,674 Business-City (bi) 11,537 57 11,938 18,809
uub 106,032 4,559,795 Business-Category (bc) 11,537 468 16,736 49,099

TABLE 2: Performance of different methods for the recommendation task on four data sets
Method MovieLens LastFM Yelp Yelp-L

Prec@10 Recall@10 NDCG@10 Prec@10 Recall@10 NDCG@10 Prec@10 Recall@10 NDCG@10 Prec@10 Recall@10 NDCG@10

BPR 0.2171 0.2854 0.6351 0.5114 0.5256 0.8271 0.1464 0.7666 0.6555 0.1923 0.7412 0.6341
NeuCF 0.2214 0.2531 0.6287 0.5648 0.5412 0.8348 0.1537 0.7751 0.6781 0.2122 0.7555 0.6587
NGCF 0.2693 0.2712 0.6211 0.6173 0.5745 0.8791 0.1943 0.8097 0.7815 0.2045 0.7234 0.6612
VAES 0.2811 0.2907 0.6618 0.6011 0.5891 0.8634 0.1922 0.7898 0.6912 0.2234 0.7512 0.6678
NeuACF 0.2459 0.2487 0.6597 0.5878 0.5587 0.8387 0.1578 0.7812 0.6698 0.2123 0.7511 0.6513
FMG 0.2618 0.2780 0.6978 0.6189 0.5987 0.8810 0.1723 0.7847 0.6787 0.2490 0.7798 0.6712
HERec 0.2421 0.2578 0.6345 0.5745 0.5542 0.8478 0.1482 0.7648 0.6878 0.2132 0.7423 0.6788
MCRec 0.2645 0.2677 0.6406 0.6148 0.5874 0.8950 0.1797 0.7779 0.6904 0.2367 0.7632 0.6811

MTRecrec 0.3123 0.2978 0.7214 0.6478 0.6213 0.9178 0.2021 0.8064 0.8016 0.2722 0.7922 0.7532
MTRecn 0.3321 0.3047 0.7310 0.6497 0.6311 0.9187 0.2098 0.8214 0.8097 0.2812 0.8001 0.7654
MTRec 0.3431 0.3245 0.7354 0.6611 0.6478 0.9345 0.2154 0.8315 0.8214 0.2975 0.8193 0.7912

Improve

22.06% 11.63% 5.39% 6.82% 8.20% 4.41% 10.86% 2.69% 5.11% 19.48% 5.07% 16.17%
11.10% 2.44% 3.38% 4.67% 3.77% 2.55% 4.01% -0.41% 2.57% 9.32% 1.59% 10.59%
9.86% 8.97% 1.94% 2.05% 4.27% 1.82% 6.58% 3.11% 2.47% 9.29% 3.42% 5.05%
3.31% 6.50% 0.60% 1.75% 2.65% 1.72% 2.67% 1.23% 1.44% 5.80% 2.40% 3.37%

TABLE 3: Performance of MTReclp, MTRecn and MTRec for the link prediction task on four data sets

Method MovieLens LastFM Yelp Yelp-L

HR@10 NDCG@10 MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10 MRR@10 HR@10 NDCG@10 MRR@10

MTReclp 4.14% 0.0253 0.0204 15.12% 0.1023 0.0870 23.28% 0.2008 0.1925 26.87% 0.3111 0.2122
MTRecn 6.29% 0.0541 0.0410 18.65% 0.1248 0.1014 27.99% 0.2587 0.2214 29.11% 0.3465 0.2490
MTRec 7.23% 0.0647 0.0498 19.17% 0.1339 0.1157 28.97% 0.2777 0.2478 32.44% 0.3651 0.2777

Improve 74.64% 155.73% 144.12% 26.79% 30.89% 32.99% 24.44% 38.30% 28.73% 20.73% 17.36% 30.87%

‘Improve’ shows the improvement percentage of our model
MTRec over other methods (except MTRecrec and MTRecn)
with the best performance on each evaluation measure, the
second row demonstrates the improvement percentage of
our model MTRecrec over other methods (except MTRec
and MTRecn) with the best performance on each evaluation
measure, the third row depicts the improvement percentage
of MTRec over MTRecrec, and the forth row shows the
improvement percentage of MTRec over MTRecn.

From Tab. 2, we can observe that MTRec significantly
outperforms existing recommendation approaches, either
leveraging HIN or not, for the recommendation task. Com-
pared to methods which do not utilize HIN (i.e., BPR,
NeuCF, NGCF and VAES), approaches using HIN (i.e.,
NeuACF, FMG, HERec, MCRec, MTRecrec, MTRecn and
MTRec) show better performance in most cases, which
demonstrates the usefulness of HIN in improving the qual-
ity of recommendation.

To investigate whether each component of MTRec con-

tributes to the improvement of performance, we evalu-
ate the performance of MTRecrec. As shown in Tab. 2, it
achieves a noticeable improvement compared to baselines.
In the worst case, MTRecrec shows a comparable perfor-
mance to the best baseline. In most cases, MTRecrec out-
performs all the baselines significantly. From the results, we
can conclude that the self-attentive meta-path modeling and
three-way interaction modeling, as introduced in Sec. 3.2,
play a vital role in increasing the performance of the recom-
mender. On the other hand, the better results of MTRecrec
shows that a pure attention based recommendation model
can yield a comparable or even better recommendation
compared to previous methods which rely on convolutional
neural network (MCRec), multi-layer perceptron (NeuACF),
graph neural network (NGCF) and variational autoencoder
(VAES).

From Tab. 2, we can also find that introducing multi-
task learning into MTRec help improve its performance
for the recommendation task, since MTRec largely exceeds

10

	0.25

	0.3

	0.35

	0.4

1 2 5 10
K

MovieLens

	0.6

	0.65

	0.7

	0.75

	0.8

1 2 5 10
K

LastFM

FMG MCRec MTRecrec MTRec

	0.16
	0.19

	0.22
	0.25
	0.28

	0.31
	0.34

1 2 5 10
K

Yelp

Fig. 3: Performance of different methods on Prec@k (k =
{1, 2, 5, 10}) for the recommendation task

	0%

	2%

	4%

	6%

	8%

1 2 5 10
K

MovieLens

	5%

	8%

11%

14%

17%

20%

1 2 5 10
K

LastFM

MTReclp MTRec

10%

15%

20%

25%

30%

1 2 5 10
K

Yelp

Fig. 4: Performance of different methods on HR@k (k =
{1, 2, 5, 10}) for the link prediction task

MTRecrec. This is consistent with our motivation of MTRec
which is illustrated in Sec. 1: considering the auxiliary task
in HIN during optimization can enhance the performance
of the model on the recommendation task.

Performance on Different Rank k. To assess the robustness
of our models, we report the Prec@k of HIN-based recom-
mendation models (FMG, MCRec, MTRecrec and MTRec)
on three data sets using k = {1, 2, 5, 10} in Fig. 3. For other
measures and Yelp-L data, similar trends can be observed.
From Fig. 3, we can conclude that MTRec consistently out-
performs other HIN-based recommendation methods which
shows the robustness of MTRec.

4.2.2 Performance for Link Prediction in HIN
Overall Performance. The focus of this paper is improving
the performance of recommendation and link prediction is
the auxiliary task which assists the main task. For ease of
exposition, we only compare the performance of MTReclp
and MTRec to show that the auxiliary task also benefits from
the multi-task learning.

We report the results of link prediction on four data sets
in Tab. 3 when evaluating using rank k = 10. The row of
‘Improve’ shows the improvement percentage of MTRec over
MTReclp which only considers the link prediction task.

From Tab. 3 we can observe that our model MTRec,
which considers both recommendation task and link pre-
diction task, significantly surpasses its downgraded version
MTReclp. From the results, we can draw the conclusion that
the multi-task mechanism we design not only improves the
performance on the main task but also benefits the auxiliary
task.

Performance on Different Rank k. We also report the
results of MTReclp and MTRec using k = {1, 2, 5, 10} for
HR@k on three data sets to evaluate the robustness of our
models. For other measures and Yelp-L data, the two models
show similar trends. Fig. 4 illustrates the results. From
Fig. 4, we can find that the performance of MTRec surpasses
MTReclp for different values of k on HR@k. Hence, both
MTReclp and MTRec are robust for the auxiliary task.

4.2.3 Effectiveness of the Bayesian Task Weight Learner
We also compare the performance of using naive joint loss
(MTRecn) and employing Bayesian weighted loss (MTRec).
The evaluation results for recommendation task and link
prediction task can be found in Tab. 2 and Tab. 3, re-
spectively. From the results, we can observe that MTRec
surpasses MTRecn in both tasks. Additionally, Bayesian

TABLE 4: Average L2 distance between each meta-path
representation and reference representation

Data Meta-Path Avg Distance Meta-Path Avg Distance

MovieLens umgm
umum

0.6421
0.7414

uuum
ummm

0.6978
0.8777

LastFM uata
uaua

0.3555
0.6487

uuua
uua

0.5871
0.4478

Yelp ubcb
ubib

0.4121
0.3977

ubub
uub

0.5789
0.5566

Yelp-L ubcb
ubib

0.4256
0.4001

ubub
uub

0.5712
0.5645

task weighter learner helps improve the performance when
MTRecn does not significantly exceed MTRecrec (e.g.,
Prec@10 for LastFM in Tab. 2) or MTReclp (e.g., MRR@10
for LastFM in Tab. 3) due to the improper setting of
task weights. This demonstrates the effectiveness of our
proposed Bayesian task weight learner in increasing the
performance, in addition to its benefit that we do not need
to manually set the weights for two tasks in the joint loss.

4.2.4 Interpretability of the Recommendation
We now conduct a detailed analysis of MTRec on its inter-
pretability.

First, we investigate the overall impact of different meta-
paths in the recommendation results of MTRec. As illus-
trated in Sec. 3.2.2, the L2 distance between the representa-
tion of each meta-path connecting a ground-truth user-item
pair and the reference representation s(item)−s(user) depicts
the importance of each meta-path. Therefore, we calculate
the average L2 distance between the embeddings of each
meta-path and the corresponding reference for all ground-
truth user-item pairs.

From Tab. 4, we can observe that “umgm” and “uata” are
most important meta-path for MTRec when it makes a rec-
ommendation in MovieLens and LastFM, respectively. For
Yelp and Yelp-L, both “ubcb” and “ubib” play a vital role.
This observation is consistent with the previous study [6].

We further take two real examples to illustrate how
the “translation” mechanism used in MTRec can help
us understand the recommendations provided by MTRec
and enhance the interpretability of RS. Fig. 5 demon-
strates the two examples. We examine the recommenda-
tion results of MTRec to a user with an anonymous id
“joIzw aUiNvBTuGoytrH7g” in Yelp data set. We call this
anonymous user Bob in the sequel.
Example 1 (ubcb). MTRec recommends one bar named “Tail-

gaters Sports Bar & Grill” to Bob, which correctly hits the
ground-truth user-item interaction, i.e., Bob has indeed

11

Bob Bob visited 21 local bars Category: Beer, Wine

& Spirits

Recommendation:

Tailgaters Sports Bar

& Grill

ub bc cb

Bob

uu ub

Recommendation:

Oregano’s Pizza Bistro

Top-4 similar users have

visited Oregano’s Pizza

Bistro

Fig. 5: Two examples for the interpretability of MTRec

interacted with “Tailgaters Sports Bar & Grill”. Then, we
investigate the L2 distance between relevant meta-path
representations and reference representations. We find
the meta-path “ubcb” contributes most to the recommen-
dation. The object type “c” (Category) in the meta-path
“ubcb” gives us the hint. By inspecting into the data, it
is found that Bob has visited 21 local businesses in the
category of “Beer, Wine & Spirits” which explains why
“ubcb” leads MTRec to recommend “Tailgaters Sports Bar
& Grill”: Bob frequently goes to lcoal bars. These 21 bars
form the first segment (i.e., “ub”) of “ubcb”. “Tailgaters
Sports Bar & Grill” and these 21 bars belong to the same
category “Beer, Wine & Spirits”, which provides the third
segment (i.e., “cb”) and the second segment (i.e., “bc”)
in ubcb. Finally, “ubcb” leads MTRec to find the correct
recommendation target “Tailgaters Sports Bar & Grill”.

Example 2 (uub). MTRec also correctly recommends one
restaurant named “Oregano’s Pizza Bistro” to Bob. We
investigate the L2 distance between relevant meta-path
representations and reference representations and find
the meta-path “uub” contributes most to this recommen-
dation. We investigate the most similar users of Bob,
which indicates that there are edges of “uu” connecting
these users to Bob in HIN. We found that the top-4 most
similar users have all visited “Oregano’s Pizza Bistro”
before, which means there are edges “ub” connecting
these 4 users to the restaurant “Oregano’s Pizza Bistro”.
This explains why meta-path “uub” plays a key role in
this successful recommendation.

The above two examples show that MTRec is able to pro-
vide good interpretabilities for the recommendation results
through using the the “translation” mechanism introduced
in Sec. 3.2.2.

5 RELATED WORK

In this section, we elaborate on three directions of previous
works which are related to MTRec.

5.1 Heterogeneous Network Embedding

Heterogeneous network embedding, which studies the em-
bedding problem of HIN through preserving the structural
information of meta-path and meta-graph, is one research
direction of network embedding. Dong et al. [34] proposed

metapath2vec and metapath2vec++, which adopt meta-path
based random walks, skip-gram model [35] and heteroge-
neous negative sampling to learn heterogeneous represen-
tations. Fan et al. [36] learns representations based on meta-
graph instead of meta-path and proposed metagraph2vec
for malware detection. HIN2Vec [27] carries out multiple
prediction training tasks jointly to learn latent vectors of
objects and meta-paths in HIN. Hussein et al. [37] found
that adopting random walks with a jump and stay strategy
can better learn the embeddings of HIN and thus selecting
and learning on meta-path is not necessary. HERR [38] tran-
scribes the rich and potentially incompatible information
from HIN to the embeddings using edge representations.
PME [39] utilizes metric learning to capture both first-order
and second-order proximities of objects in HIN. Shi et al.
[40] introduced the concept of aspects into HIN with each
aspect being a unit representing one underlying semantic
facet. Instead of preserving information of the network
in one semantic space, they proposed ASPEM which en-
capsulates information regarding each aspect individually.
SHNE [41] captures both heterogeneous structural informa-
tion and unstructured semantic information (e.g., text) of
objects. Wang et al. [42] used hyperbolic spaces instead of
Euclidean spaces as the proximity measurement for learning
HIN embedding. RHINE [43] distinguishes relations into
two categories (i.e., affiliation relations and interaction rela-
tions) and uses them to model different relations. Wang et al.
[44] introduced the attention mechanism into heterogeneous
network embedding. The importance between an object and
its meta-path based neighborhood and the importance of
different meta-paths are learned by object-level attention
and semantic-level attention, respectively.

5.2 Traditional Recommendation

Traditional recommender systems (RS) typically rely on
collaborative filtering methods (CF), especially matrix fac-
torization (MF) [1], to harness historical user-item interac-
tions for the recommendation. MF models user preferences
and item properties by factorizing the user-item interaction
matrix into two low-dimensional latent matrices. MF has
been successfully deployed in the industry (e.g., Amazon
and eBay [1]), due to its effectiveness when handling large-
scale data [45]. The cold-start problem, where historical data
is not available for new users or items, is one of the most
challenging issues in RS. In order to alleviate the cold-start
problem, another line of work is to incorporate additional
context information, which is also called auxiliary data
or side information (e.g., social network [46, 47], review
text [48, 49], user grouping data [50, 51], relationships in
a graph [52], location [53], image [54] and time-series infor-
mation [55]), into recommendation models [1].

Recently, the advance of deep learning has fostered
the development of RS. Multi-layer perceptron (MLP) [25],
Graph Neural Networks (GNN) [29], Variational Autoen-
coder [30] and other deep neural architectures have been
introduced to model the recommendation task and show
promising results. Readers can refer to Zhang et al. [56] for
a detailed survey.

However, traditional RS only consider homogeneous
information and cannot fully model the heterogeneous in-

12

formation which can be widely observed in real life, i.e.,
complex objects with different types and rich interactions.

5.3 Recommendations over HIN

Recent decades have witnessed a massive increase of aux-
iliary data in RS. However, it is difficult to manage and
utilize this heterogeneous and complex information using
traditional methods for network analysis. HIN provides a
flexible way to model the data heterogeneity and character-
ize the useful structural and semantic information contained
in auxiliary data for the recommendation task [7].

Feng and Wang [57] proposed OptRank to utilize het-
erogeneous information and alleviate the cold-start prob-
lem in social tagging systems. Yu et al. [11] measured the
similarity of all item pairs along one meta-path and the
different preferences on different meta-path semantics were
distinguished by linear regression. Then, an unified MF
model was used to take advantages of both rating data
and meta-path semantics for the recommendation task. Yu
et al. [13] introduced the diffusion of user preferences based
on similarity matrices defined by different meta-paths and
user/item latent features are learned using nonnegative
MF on the diffused matrix. With the latent features, they
defined a recommendation model and optimized it with
Bayesian Ranking. Subsequently, they improved the model
by considering personalization [58]. Luo et al. [14] adopted
PathSim [8] to measure the relations between users, items
and user-item pairs. Finally, they used a unified MF model
to incorporate heterogeneous information into social rec-
ommendation task. Shi et al. [59] designed SemRec which
considers attribute values of links in HIN and personal-
ized weights of different meta-paths for each user in RS.
Pham et al. [60] proposed HeteRS, which represents HIN
as multiple transition matrices, each of which corresponds
to a relation from one to another type of objects. HeteRS
transforms the recommendation problem into node prox-
imity calculation problems w.r.t. some query nodes, and
then uses the multivariate Markov chain to solve it. Fang
et al. [61] harnessed a combination of Bayesian Personalized
Ranking model and meta-path based representation learn-
ing for music recommendation. FMG [3] adopts MF to learn
user/item latent features from user-item similarity matrix,
which is obtained from meta-graph. Then FMG feeds the
latent features into factorization machine (FM) [62] with
Group lasso for the recommendation task.

Previous HIN-based recommendation models mainly
rely on meta-path or meta-graph based similarity which
suffers from the high computational complexity [16] and
may not fully reflect the latent features of users and items
in HIN [7]. Recently, there are some attempts to utilize the
heterogeneous network embedding in order to mine user
and item features in HIN based RS efficiently. Yu et al. [4]
proposed to learn user embeddings through meta-path and
then compute cosine similarity over user embeddings to
identify implicit friends (i.e., users with high similarity) in
social RS. NeuACF [31] extracts aspect-level similarity ma-
trices of users and items through different meta-paths and
then feeds them into deep neural network with attention
to learn aspect-level latent factors in RS. Jiang et al. [63]
learned representations for publications from HIN which is

constructed from multilingual repositories and then offered
recommendations for cross-language citation. Shi et al. [7]
proposed HERec, which adopts random walks to generate
object sequences and learn the embeddings of objects. Then,
the object embeddings are transformed and integrated into
an extended MF approach. Chen et al. [5] took advan-
tage of meta-path, neural network, hierarchical attention
mechanism and FM to predict ratings in HIN-based rec-
ommender. Hu et al. [6] firstly learned the embeddings of
meta-path in addition to users and items in HIN-based RS,
and considered the interplay between the meta-path and
the involved user-item pair in an interaction. They also
proposed a co-attention mechanism to mutually improve
the representations for meta-path based context, users and
items.

6 CONCLUSION

In this paper, we propose a multi-task learning frame-
work, called MTRec, for recommendation over HIN. MTRec
mostly relies on self-attention, to capture the complex se-
mantics in meta-paths. It jointly optimizes tasks of both
recommendation and link prediction, and the balance is
automatically achieved via using a Bayesian task weight
learner. What is more, MTRec provides good interpretabili-
ties of recommendation through a “translation” mechanism
which is used to model the three-way interactions among
users, items and the meta-paths connecting them.

However, MTRec does not achieve a very high preci-
sion in some cases (e.g., around 0.2 for Prec@10 in Yelp),
though it already exceeds existing methods. This obser-
vation indicates that HIN-based recommendation problem
is far from being addressed completely. Moreover, MTRec
does not explicitly leverage users’ new coming interactions
and perform incremental learning (i.e., data sample-level
learning). The bidirectional information flow between HIN
and RS in current MTRec is implicit, i.e., the parameters of
two components are updated according to the information
flow between them (i.e., feature-level learning). In the fu-
ture, we plan to study if the precision of MTRec can be
further improved or not, by considering data sample-level
information flow.

7 ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (no. 61972328).

REFERENCES

[1] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filter-
ing beyond the user-item matrix: A survey of the state
of the art and future challenges,” ACM Comput. Surv.,
vol. 47, no. 1, pp. 3:1–3:45, 2014.

[2] C. Shi, Y. Li, J. Zhang, Y. Sun, and P. S. Yu, “A survey
of heterogeneous information network analysis,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 1, pp. 17–37, 2017.

[3] H. Zhao, Q. Yao, J. Li, Y. Song, and D. L. Lee, “Meta-
graph based recommendation fusion over heteroge-
neous information networks,” in KDD, 2017, pp. 635–
644.

13

[4] J. Yu, M. Gao, J. Li, H. Yin, and H. Liu, “Adaptive
implicit friends identification over heterogeneous net-
work for social recommendation,” in CIKM, 2018, pp.
357–366.

[5] L. Chen, Y. Liu, Z. Zheng, and P. S. Yu, “Heterogeneous
neural attentive factorization machine for rating pre-
diction,” in CIKM, 2018, pp. 833–842.

[6] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu, “Leveraging
meta-path based context for top-N recommendation
with A neural co-attention model,” in KDD, 2018, pp.
1531–1540.

[7] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu, “Heteroge-
neous information network embedding for recommen-
dation,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp.
357–370, 2019.

[8] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim:
Meta path-based top-k similarity search in heteroge-
neous information networks,” PVLDB, vol. 4, no. 11,
pp. 992–1003, 2011.

[9] Y. Fang, W. Lin, V. W. Zheng, M. Wu, K. C. Chang,
and X. Li, “Semantic proximity search on graphs with
metagraph-based learning,” in ICDE, 2016, pp. 277–
288.

[10] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis,
and X. Li, “Meta structure: Computing relevance in
large heterogeneous information networks,” in KDD,
2016, pp. 1595–1604.

[11] X. Yu, X. Ren, Q. Gu, Y. Sun, and J. Han, “Collaborative
filtering with entity similarity regularization in hetero-
geneous information networks,” in IJCAI HINA, 2013.

[12] Y. Zhang and X. Chen, “Explainable recommendation:
A survey and new perspectives,” arXiv Preprint, 2018.
[Online]. Available: https://arxiv.org/abs/1804.11192

[13] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu,
B. Norick, and J. Han, “Recommendation in heteroge-
neous information networks with implicit user feed-
back,” in RecSys, 2013, pp. 347–350.

[14] C. Luo, W. Pang, Z. Wang, and C. Lin, “Hete-cf: Social-
based collaborative filtering recommendation using
heterogeneous relations,” in ICDM, 2014, pp. 917–922.

[15] H. Zhao, Q. Yao, Y. Song, J. T. Kwok, and D. L.
Lee, “Learning with heterogeneous side information
fusion for recommender systems,” arXiv Preprint, 2018.
[Online]. Available: https://arxiv.org/abs/1801.02411

[16] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on
network embedding,” IEEE Trans. Knowl. Data Eng.,
2018.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in NIPS, 2017, pp. 6000–
6010.

[18] A. Galassi, M. Lippi, and P. Torroni, “Attention, please!
A critical review of neural attention models in natural
language processing,” arXiv Preprint, 2019. [Online].
Available: https://arxiv.org/abs/1902.02181

[19] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge
graph embedding: A survey of approaches and appli-
cations,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 12,
pp. 2724–2743, 2017.

[20] Y. Liu, H. Li, A. Garcı́a-Durán, M. Niepert, D. Oñoro-
Rubio, and D. S. Rosenblum, “MMKG: multi-modal

knowledge graphs,” in ESWC, vol. 11503, 2019, pp.
459–474.

[21] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling
multi-relational data,” in NIPS, 2013, pp. 2787–2795.

[22] W. Kang and J. J. McAuley, “Self-attentive sequential
recommendation,” in ICDM, 2018, pp. 197–206.

[23] S. Ruder, “An overview of multi-task learning in
deep neural networks,” arXiv Preprint, 2017. [Online].
Available: https://arxiv.org/abs/1706.05098

[24] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning
using uncertainty to weigh losses for scene geometry
and semantics,” in CVPR, 2018, pp. 7482–7491.

[25] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua,
“Neural collaborative filtering,” in WWW, 2017, pp.
173–182.

[26] H. Yu, C. Hsieh, S. Si, and I. S. Dhillon, “Scalable
coordinate descent approaches to parallel matrix fac-
torization for recommender systems,” in ICDM, 2012,
pp. 765–774.

[27] T. Fu, W. Lee, and Z. Lei, “Hin2vec: Explore meta-paths
in heterogeneous information networks for representa-
tion learning,” in CIKM, 2017, pp. 1797–1806.

[28] S. Rendle, C. Freudenthaler, Z. Gantner, and
L. Schmidt-Thieme, “BPR: bayesian personalized rank-
ing from implicit feedback,” in UAI, 2009, pp. 452–461.

[29] X. Wang, X. He, M. Wang, F. Feng, and T. Chua, “Neural
graph collaborative filtering,” in SIGIR, 2019, pp. 165–
174.

[30] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara,
“Variational autoencoders for collaborative filtering,”
in WWW, 2018, pp. 689–698.

[31] X. Han, C. Shi, S. Wang, P. S. Yu, and L. Song, “Aspect-
level deep collaborative filtering via heterogeneous in-
formation networks,” in IJCAI, 2018, pp. 3393–3399.

[32] M. Quadrana, P. Cremonesi, and D. Jannach,
“Sequence-aware recommender systems,” ACM Com-
put. Surv., vol. 51, no. 4, pp. 66:1–66:36, 2018.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2015.

[34] Y. Dong, N. V. Chawla, and A. Swami, “metapath2vec:
Scalable representation learning for heterogeneous net-
works,” in KDD, 2017, pp. 135–144.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in NIPS, 2013, pp.
3111–3119.

[36] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu,
“Gotcha - sly malware!: Scorpion A metagraph2vec
based malware detection system,” in KDD, 2018, pp.
253–262.

[37] R. Hussein, D. Yang, and P. Cudré-Mauroux, “Are
meta-paths necessary?: Revisiting heterogeneous graph
embeddings,” in CIKM, 2018, pp. 437–446.

[38] Y. Shi, Q. Zhu, F. Guo, C. Zhang, and J. Han, “Easing
embedding learning by comprehensive transcription of
heterogeneous information networks,” in KDD, 2018,
pp. 2190–2199.

[39] H. Chen, H. Yin, W. Wang, H. Wang, Q. V. H. Nguyen,
and X. Li, “PME: projected metric embedding on het-
erogeneous networks for link prediction,” in KDD,

https://arxiv.org/abs/1804.11192
https://arxiv.org/abs/1801.02411
https://arxiv.org/abs/1902.02181
https://arxiv.org/abs/1706.05098

14

2018, pp. 1177–1186.
[40] Y. Shi, H. Gui, Q. Zhu, L. M. Kaplan, and J. Han, “As-

pem: Embedding learning by aspects in heterogeneous
information networks,” in SDM, 2018, pp. 144–152.

[41] C. Zhang, A. Swami, and N. V. Chawla, “SHNE: rep-
resentation learning for semantic-associated heteroge-
neous networks,” in WSDM, 2019, pp. 690–698.

[42] X. Wang, Y. Zhang, and C. Shi, “Hyperbolic hetero-
geneous information network embedding,” in AAAI,
2019, pp. 5337–5344.

[43] Y. Lu, C. Shi, L. Hu, and Z. Liu, “Relation structure-
aware heterogeneous information network embed-
ding,” in AAAI, 2019, pp. 4456–4463.

[44] X. Wang, H. Ji, C. Shi, B. Wang, P. Cui, P. Yu, and Y. Ye,
“Heterogeneous graph attention network,” in WWW,
2019.

[45] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis,
“FEXIPRO: fast and exact inner product retrieval in
recommender systems,” in SIGMOD Conference, 2017,
pp. 835–850.

[46] H. Li, D. Wu, W. Tang, and N. Mamoulis, “Overlap-
ping community regularization for rating prediction in
social recommender systems,” in RecSys, 2015, pp. 27–
34.

[47] H. Li, D. Wu, and N. Mamoulis, “A revisit to social
network-based recommender systems,” in SIGIR, 2014,
pp. 1239–1242.

[48] C. Wang, M. Niepert, and H. Li, “LRMM: learning to
recommend with missing modalities,” in EMNLP, 2018,
pp. 3360–3370.

[49] A. Garcı́a-Durán, R. Gonzalez, D. Oñoro-Rubio,
M. Niepert, and H. Li, “Transrev: Modeling reviews as
translations from users to items,” arXiv Preprint, 2018.
[Online]. Available: https://arxiv.org/abs/1801.10095

[50] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient
fault-tolerant group recommendation using alpha-beta-
core,” in CIKM, 2017, pp. 2047–2050.

[51] H. Li, Y. Liu, Y. Qian, N. Mamoulis, W. Tu, and D. W.
Cheung, “HHMF: hidden hierarchical matrix factor-
ization for recommender systems,” Data Min. Knowl.
Discov., vol. 33, no. 6, pp. 1548–1582, 2019.

[52] Y. Qian, H. Li, N. Mamoulis, Y. Liu, and D. W. Cheung,
“Reverse k-ranks queries on large graphs,” in EDBT,
2017, pp. 37–48.

[53] Z. Lu, H. Li, N. Mamoulis, and D. W. Cheung, “HBGG:
a hierarchical bayesian geographical model for group
recommendation,” in SDM, 2017, pp. 372–380.

[54] C. Wang, M. Niepert, and H. Li, “Recsys-dan: Discrim-
inative adversarial networks for cross-domain recom-
mender systems,” IEEE Trans. Neural Netw. Learning
Syst., 2019.

[55] H. Li, Y. Liu, N. Mamoulis, and D. S. Rosen-
blum, “Translation-based sequential recommendation
for complex users on sparse data,” IEEE Trans. Knowl.
Data Eng., 2019.

[56] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning
based recommender system: A survey and new per-
spectives,” ACM Comput. Surv., vol. 52, no. 1, pp. 5:1–
5:38, 2019.

[57] W. Feng and J. Wang, “Incorporating heterogeneous
information for personalized tag recommendation in

social tagging systems,” in KDD, 2012, pp. 1276–1284.
[58] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandel-

wal, B. Norick, and J. Han, “Personalized entity rec-
ommendation: a heterogeneous information network
approach,” in WSDM, 2014, pp. 283–292.

[59] C. Shi, Z. Zhang, P. Luo, P. S. Yu, Y. Yue, and B. Wu,
“Semantic path based personalized recommendation
on weighted heterogeneous information networks,” in
CIKM, 2015, pp. 453–462.

[60] T. N. Pham, X. Li, G. Cong, and Z. Zhang, “A general
recommendation model for heterogeneous networks,”
IEEE Trans. Knowl. Data Eng., vol. 28, no. 12, pp. 3140–
3153, 2016.

[61] Q. Fang, L. Liu, J. Yu, and J. Wen, “Meta-path based
heterogeneous graph embedding for music recommen-
dation,” in ICONIP (3), vol. 11303, 2018, pp. 101–113.

[62] S. Rendle, “Factorization machines,” in ICDM, 2010,
pp. 995–1000.

[63] Z. Jiang, Y. Yin, L. Gao, Y. Lu, and X. Liu, “Cross-
language citation recommendation via hierarchical rep-
resentation learning on heterogeneous graph,” in SI-
GIR, 2018, pp. 635–644.

Hui Li is currently an assistant professor in the
School of Informatics, Xiamen University. His re-
search interests include data mining and data
management with applications in recommender
systems and knowledge graph. He received his
B.Eng. degree in Software Engineering from
Central South University (2012), and his MPhil
and PhD degrees in Computer Science from
University of Hong Kong (2015, 2018).

Yanlin Wang is a researcher in Microsoft Re-
search Asia. Her research interests include pro-
gramming languages and data engineering, and
the applications of their intersection in the big
data area. She obtained her B.Eng. degree in
Computer Science and Technology from Zhe-
jiang University in 2014 and her PhD degree in
Computer Science from University of Hong Kong
in 2019.

Ziyu Lyu is currently an assistant professor in
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. She received a
Ph.D. degree in Computer Science from the Uni-
versity of Hong Kong in 2016. Her work includes
research into spatio-temporal databases, rec-
ommender systems, text mining, and machine
learning.

Jieming Shi received his PhD in computer sci-
ence from University of Hong Kong. He is now a
Research Fellow at National University of Singa-
pore. His research interests include large scale
graph algorithms, recommendations, and knowl-
edge graphs.

https://arxiv.org/abs/1801.10095

	Introduction
	Preliminaries
	MTRec
	Overview of Our Model
	Main Task: HIN-based Recommendation
	Self-attentive Meta-path Modeling
	Modeling Three-way Interactions in Recommender
	Loss Function of HIN-based Recommendation

	Auxiliary Task: Link Prediction for HIN
	Loss Function of Link Prediction.

	Multi-task Learning for HIN-based Recommender
	Feature Sharing
	Bayesian Task Weight Learner

	Experiments
	Experimental Settings
	Data
	Baselines
	Evaluation

	Experimental Results
	Performance for HIN based Recommendation
	Performance for Link Prediction in HIN
	Effectiveness of the Bayesian Task Weight Learner
	Interpretability of the Recommendation

	Related Work
	Heterogeneous Network Embedding
	Traditional Recommendation
	Recommendations over HIN

	Conclusion
	Acknowledgment
	Biographies
	Hui Li
	Yanlin Wang
	Ziyu Lyu
	Jieming Shi

