
1

Fast and Secure Distributed
Nonnegative Matrix Factorization

Yuqiu Qian, Conghui Tan, Danhao Ding, Hui Li, and Nikos Mamoulis

Abstract—Nonnegative matrix factorization (NMF) has been successfully applied in several data mining tasks. Recently, there is an
increasing interest in the acceleration of NMF, due to its high cost on large matrices. On the other hand, the privacy issue of NMF over
federated data is worthy of attention, since NMF is prevalently applied in image and text analysis which may involve leveraging privacy
data (e.g, medical image and record) across several parties (e.g., hospitals). In this paper, we study the acceleration and security
problems of distributed NMF. Firstly, we propose a distributed sketched alternating nonnegative least squares (DSANLS) framework for
NMF, which utilizes a matrix sketching technique to reduce the size of nonnegative least squares subproblems with a convergence
guarantee. For the second problem, we show that DSANLS with modification can be adapted to the security setting, but only for one or
limited iterations. Consequently, we propose four efficient distributed NMF methods in both synchronous and asynchronous settings
with a security guarantee. We conduct extensive experiments on several real datasets to show the superiority of our proposed
methods. The implementation of our methods is available at https://github.com/qianyuqiu79/DSANLS.

Index Terms—Distributed Nonnegative Matrix Factorization, Matrix Sketching, Privacy

F

1 INTRODUCTION

NONNEGATIVE matrix factorization (NMF) is a tech-
nique for discovering nonnegative latent factors

and/or performing dimensionality reduction. Unlike gen-
eral matrix factorization (MF), NMF restricts the two output
matrix factors to be nonnegative. Specifically, the goal of
NMF is to decompose a huge matrix M ∈ Rm×n

+ into the
product of two matrices U ∈ Rm×k

+ and V ∈ Rn×k
+ such

that M ≈ UV >. Rm×n
+ denotes the set of m × n matrices

with nonnegative real values, and k is a user-specified
dimensionality, where typically k � m,n. Nonnegativity
is inherent in the feature space of many real-world applica-
tions, where the resulting factors of NMF can have a natural
interpretation. Therefore, NMF has been widely used in
a branch of fields including text mining [1], image/video
processing [2], recommendation [3], and analysis of social
networks [4].

Modern data analysis tasks apply on big matrix data
with increasing scale and dimensionality. Examples [5] in-
clude community detection in a billion-node social network,
background separation on a 4K video in which every frame
has approximately 27 million rows, and text mining on a
bag-of-words matrix with millions of words. The volume
of data is anticipated to increase in the ‘big data’ era,
making it impossible to store the whole matrix in the main
memory throughout NMF. Therefore, there is a need for

• Yuqiu Qian is with Tencent, Shenzhen, China. E-mail: yuqi-
uqian@tencent.com.

• Conghui Tan is with WeBank, Shenzhen, China. E-mail: tancon-
ghui@gmail.com.

• Danhao Ding is with Department of Computer Science, University of
Hong Kong, Hong Kong SAR, China. E-mail: dhding2@cs.hku.hk.

• Hui Li is with School of Informatics, Xiamen University, Xiamen, Fujian,
China. E-mail: hui@xmu.edu.cn. He is the corresponding author.

• Nikos Mamoulis is with Department of Computer Science and En-
gineering, University of Ioannina, Ioannina, Epirus, Greece. E-mail:
nikos@cs.uoi.gr.

high-performance and scalable distributed NMF algorithms.
On the other hand, there is a surge of works on privacy-
preserving data mining over federated data [6, 7] in re-
cent years. In contrast to traditional research about privacy
which emphasizes protecting individual information from
single institution, federated data mining deals with multiple
parties. Each party possesses its own confidential dataset(s)
and the union of data from all parties is utilized for
achieving better performance in the target task. Due to the
prevalent use of NMF in image and text analysis which may
involve leveraging privacy data (e.g, medical image and
record) across several parties (e.g., hospitals), the privacy
issue of NMF over federated data is worthy of attention.
To address aforementioned challenges of NMF (i.e., high
performance and privacy), we study the acceleration and
security problems of distributed NMF in this paper.

First of all, we propose the distributed sketched alternating
nonnegative least squares (DSANLS) for accelerating NMF.
The state-of-the-art distributed NMF is MPI-FAUN [8], a
general framework that iteratively solves the nonnegative
least squares (NLS) subproblems for U and V . The main
idea behind MPI-FAUN is to exploit the independence of
local updates for rows of U and V , in order to minimize the
communication requirements of matrix multiplication oper-
ations within the NMF algorithms. Unlike MPI-FAUN, our
idea is to speed up distributed NMF in a new, orthogonal
direction: by reducing the problem size of each NLS sub-
problem within NMF, which in turn decreases the overall
computation cost. In a nutshell, we reduce the size of each
NLS subproblem, by employing a matrix sketching technique:
the involved matrices in the subproblem are multiplied
by a specially designed random matrix at each iteration,
which greatly reduces their dimensionality. As a result, the
computational cost of each subproblem significantly drops.

However, applying matrix sketching comes with several
issues. First, although the size of each subproblem is sig-

https://github.com/qianyuqiu79/DSANLS

2

nificantly reduced, sketching involves matrix multiplication
which brings computational overhead. Second, unlike in a
single machine setting, data is distributed to different nodes
in distributed environment. Nodes may have to communi-
cate extensively in a poorly designed solution. In particular,
each node only retains part of both the input matrix and the
generated approximate matrices, causing difficulties due to
data dependencies in the computation process. Besides, the
generated random matrices should be the same for all nodes
in every iteration, while broadcasting the random matrix to
all nodes brings severe communication overhead and can
become the bottleneck of distributed NMF. Furthermore, af-
ter reducing each original subproblem to a sketched random
new subproblem, it is not clear whether the algorithm still
converges and whether it converges to stationary points of
the original NMF problem.

Our DSANLS overcomes these problems. Firstly, the
extra computation cost due to sketching is reduced with
a proper choice of the random matrices. Then, the same
random matrices used for sketching are generated indepen-
dently at each node, thus there is no need for transferring
them among nodes during distributed NMF. Having the
complete random matrix at each node, an NMF iteration can
be done locally with the help of a matrix multiplication rule
with proper data partitioning. Therefore, our matrix sketch-
ing approach reduces not only the computational overhead,
but also the communication cost. Moreover, due to the
fact that sketching also shifts the optimal solution of each
original NMF subproblem, we propose subproblem solvers
paired with theoretical guarantees of their convergence to a
stationary point of the original subproblems.

To provide solutions to the problem of secure distributed
NMF over federated data, we first show that DSANLS with
modification can be adapted to this security setting, but
only for one or limited iterations. Therefore, we design new
methods called Syn-SD and Syn-SSD in synchronous setting.
They are later extended to Asyn-SD and Asyn-SSD in asyn-
chronous setting (i.e., client/server), respectively. Syn-SSD
improves the convergence rate of Syn-SD, without incurring
much extra communication cost. It also reduces computa-
tional overhead by sketching. All proposed algorithms are
secure with a guarantee. Secure distributed NMF problem
is hard in nature. All parties involved should not be able to
infer the confidential information during the process. To the
best of our knowledge, we are the first to study NMF over
federated data.

In summary, our contributions are as follows:
• DSANLS is the first distributed NMF algorithm that lever-

ages matrix sketching to reduce the problem size of each
NLS subproblem and can be applied to both dense and
sparse input matrices with a convergence guarantee.

• We propose a novel and specially designed subproblem
solver (proximal coordinate descent), which helps DSANLS
converge faster. We also discuss the use of projected gra-
dient descent as subproblem solver, showing that it is
equivalent to stochastic gradient descent (SGD) on the
original (non-sketched) NLS subproblem.

• For the problem of secure distributed NMF, we propose
efficient methods, Syn-SD and Syn-SSD, in synchronous
setting and later extend them to asynchronous setting.
Through sketching, their computation cost is significantly

Algorithm 1 Two-Block Coordinate Descent: Framework of
Most NMF Algorithms
Input: M
Parameter: Iteration number T

1: initialize U0 ≥ 0, V 0 ≥ 0
2: for t = 0 to T − 1 do
3: U t+1 ← update(M , U t, V t)
4: V t+1 ← update(M , U t+1, V t)
5: return UT and V T

reduced. They are the first secure distributed NMF meth-
ods for federated data.

• We conduct extensive experiments using several (dense
and sparse) real datasets, which demonstrates the effi-
ciency and scalability of our proposals.

The remainder of the paper is organized as follows.
Sec. 2 provides the background and discusses the related
work. Our DSANLS algorithm with detailed theoretical
analysis is presented in Sec. 3. Our proposed algorithms
for secure distributed NMF problem in both synchronous
and asynchronous settings are presented in Sec. 4. Sec. 5
evaluates all algorithms. Finally, Sec. 6 concludes the paper.

Notations. For a matrix A, we use Ai:j to denote the entry
at the i-th row and j-th column of A. Besides, either i or
j can be omitted to denote a column or a row, i.e., Ai: is
the i-th row of A, and A:j is its j-th column. Furthermore, i
or j can be replaced by a subset of indices. For example, if
I ⊂ {1, 2, . . . ,m}, AI: denotes the sub-matrix of A formed
by all rows in I , whereas A:J is the sub-matrix of A formed
by all columns in a subset J ⊂ {1, 2, . . . , n}.

2 BACKGROUND AND RELATED WORK

In Sec. 2.1, we first illustrate NMF and its security problem
in a distributed environment. Then we elaborate on previ-
ous works which are related to this paper in Sec. 2.2.

2.1 Preliminary

2.1.1 NMF Algorithms
Generally, NMF can be defined as an optimization prob-
lem [9] as follows:

min
U∈Rm×k

+ ,V ∈Rn×k
+

∥∥∥M − UV >∥∥∥
F
, (1)

where ||X||F =
(∑

ij x
2
ij

)1/2
is the Frobenius norm of

X . Problem (1) is hard to solve directly because it is non-
convex. Therefore, almost all NMF algorithms leverage two-
block coordinate descent schemes (shown in Alg. 1): they
optimize over one of the two factors, U or V , while keeping
the other fixed [10]. By fixing V , we can optimize U by
solving a nonnegative least squares (NLS) subproblem:

min
U∈Rm×k

+

∥∥∥M − UV >∥∥∥
F
. (2)

Similarly, if we fix U , the problem becomes:

min
V ∈Rn×k

+

∥∥∥M> − V U>∥∥∥
F
. (3)

3

Within two-block coordinate descent schemes (exact or
inexact), different subproblem solvers are proposed. The
first widely used update rule is Multiplicative Updates
(MU) [9, 11]. MU is based on the majorization-minimization
framework and its application guarantees that the objec-
tive function monotonically decreases [9, 11]. Another ex-
tensively studied method is alternating nonnegative least
squares (ANLS), which represents a class of methods where
the subproblems for U and V are solved exactly following
the framework described in Alg. 1. ANLS is guaranteed to
converge to a stationary point [12] and has been shown
to perform very well in practice with active set [13, 14],
projected gradient [15], quasi-Newton [16], or accelerated
gradient [17] methods as the subproblem solver. Therefore,
we focus on ANLS in this paper.

2.1.2 Secure Distributed NMF

Secure distributed NMF problem is meaningful with prac-
tical applications. Suppose two hospitals A and B have
different clinical records, M1 and M2 (i.e., matrices), for
same set of phenotypes. For legal or commercial concerns,
it is required that none of the hospitals can reveal personal
records to another directly. For the purpose of phenotype
classification, NMF task can be applied independently (i.e.,
M1 ≈ U1V

>
1 and M2 ≈ U2V

>
2). However, since M1 and

M2 have the same schema for phenotypes, the concatenated
matrix M = [M1,M2] can be taken as input for NMF and
results in better user (i.e., patients) latent representations V1
and V2 by sharing the same item (i.e., phenotypes) latent
representation U :

M =
[
M1 M2

]
≈
[
UV >1 UV >2

]
= U ·

[
V >1 V >2

]
. (4)

Throughout the factorization process, a secure distributed
NMF should guarantee that party A only has access to M1,
U and V1 and party B only has access to M2, U and V2. It
is worth noting that the above problem of distributed NMF
with two parties can be straightforwardly extended to N
parties. The requirement of all parties over federated data
in secure distributed NMF is actual the so-called t-private
protocol (shown in Definition 1 with t = N−1) which derives
from secure function evaluation [18]. In this paper, we will
use it to assess whether a distributed NMF is secure.

Definition 1. (t-private protocol). All N parties follow the
protocol honestly, but they are also curious about inferring other
party’s private information based on their own data (i.e., honest-
but-curious). A protocol is t-private if any t parties who collude
at the end of the protocol learn nothing beyond their own outputs.

Note that a single matrix transpose operation trans-
forms a column-concatenated matrix to a row-concatenated
matrix. Without loss of generality, we only consider the
scenario that matrices are concatenated along rows in this
paper.

Secure distributed NMF problem is hard in nature.
Firstly, party A needs to solve the NMF problem to get U
and V1 together with party B. At the same time, party A
should not be able to infer V2 or M2 during the whole pro-
cess. Such secure requirement makes it totally different from
traditional distributed NMF problem, whose data partition
already incurs secure violation.

2.2 Related Work

In the sequel, we briefly review three research areas which
are related to this paper.

2.2.1 Accelerating NMF
Parallel NMF algorithms are well studied in the litera-
ture [19, 20]. However, different from a parallel and single
machine setting, data sharing and communication have
considerable cost in a distributed setting. Therefore, we need
specialized NMF algorithms for massive scale data handling
in a distributed environment. The first method in this direc-
tion [21] is based on the MU algorithm. It mainly focuses
on sparse matrices and applies a careful partitioning of the
data in order to maximize data locality and parallelism.
Later, CloudNMF [22], a MapReduce-based NMF algorithm
similar to [21], was implemented and tested on large-scale
biological datasets. Another distributed NMF algorithm [23]
leverages block-wise updates for local aggregation and par-
allelism. It also performs frequent updates using whenever
possible the most recently updated data, which is more
efficient than traditional concurrent counterparts. Apart
from MapReduce implementations, Spark is also attracting
attention for its advantage in iterative algorithms, e.g., using
MLlib [24]. Finally, there are implementations using X10 [25]
and on GPU [26].

The most recent and related work in this direction is
MPI-FAUN [5, 8], which is the first implementation of
NMF using MPI for interprocessor communication. MPI-
FAUN is flexible and can be utilized for a broad class of
NMF algorithms that iteratively solve NLS subproblems
including MU, HALS, and ANLS/BPP. MPI-FAUN exploits
the independence of local update computation for rows of
U and V to apply communication-optimal matrix multi-
plication. In a nutshell, the full matrix M is split across a
two-dimensional grid of processors and multiple copies of
both U and V are kept at different nodes, in order to reduce
the communication between nodes during the iterations of
NMF algorithms.

2.2.2 Matrix Sketching
Matrix sketching is a technique that has been previously
used in numerical linear algebra [27], statistics [28] and
optimization [29]. Its basic idea is described as follows.
Suppose we need to find a solution x to the equation:
Ax = b, (A ∈ Rm×n, b ∈ Rm). Instead of solving this
equation directly, in each iteration of matrix sketching, a
random matrix S ∈ Rd×m (d � m) is generated, and
we instead solve the following problem: (SA)x = Sb.
Obviously, the solution to the first equation is also a solution
to the second equation, but not vice versa. However, the
problem size has now decreased from m×n to d×n. With a
properly generated random matrix S and an appropriate
method to solve subproblem in the second equation, it
can be guaranteed that we will progressively approach the
solution to the first equation by iteratively applying this
sketching technique.

To the best of our knowledge, there is only one piece of
previous work [30] which incorporates dual random projec-
tion into the NMF problem, in a centralized environment,
sharing similar ideas as SANLS, the centralized version of

4

our DSANLS algorithm. However, Wang et al. [30] did not
provide an efficient subproblem solver, and their method
was less effective than non-sketched methods in practical
experiments. Besides, data sparsity was not taken into con-
sideration in their work. Furthermore, no theoretical guar-
antee was provided for NMF with dual random projection.
In short, SANLS is not same as [30] and DSANLS is much
more than a distributed version of [30]. The methods that
we propose in this paper are efficient in practice and have
strong theoretical guarantees.

2.2.3 Secure Matrix Computation on Federated Data

In federated data mining, parties collaborate to perform
data processing task on the union of their unencrypted data,
without leaking their private data to other participants [31].
A surge of work in the literature studies federated matrix
computation algorithms, such as privacy-preserving gradi-
ent descent [32, 33], eigenvector computation [34], singular
value decomposition [35, 36], k-means clustering [37], and
spectral clustering [38] over partitioned data on different
parties. Secure multi-party computation (MPC) are applied
to preserve the privacy of the parties involved (e.g. se-
cure addition, secure multiplication and secure dot prod-
uct) [37, 39]. These Secure MPC protocols compute arbitrary
function among n parties and tolerate up to t < (1/2)n cor-
rupted parties, at a cost Ω(n) per bit [40, 41]. These protocols
are too generic when it comes to a specific task like secure
NMF. Our proposed protocol does not incorporate costly
MPC multiplication protocols while tolerates up to n-1
corrupted (static, honest but curious) parties. Recently, Kim
et al. [6] proposed a federated method to learn phenotypes
across multiple hospitals with alternating direction method
of multipliers (ADMM) tensor factorization; and Feng et al.
[7] developed a privacy-preserving tensor decomposition
framework for processing encrypted data in a federated
cloud setting.

3 DSANLS: DISTRIBUTED SKETCHED ANLS
In this section, we illustrate our DSANLS method for accel-
erating NMF in general distributed environment.

3.1 Data Partitioning

Assume there areN computing nodes in the cluster. We par-
tition the row indices {1, 2, . . . ,m} of the input matrix M
into N disjoint sets I1, I2, . . . , IN , where Ir ⊂ {1, 2, . . . ,m}
is the subset of rows assigned to node r, as in [21]. Similarly,
we partition the column indices {1, 2, . . . , n} into disjoint
sets J1, J2, . . . , JN and assign column set Jr to node r. The
number of rows and columns in each node are near the
same in order to achieve load balancing, i.e., |Ir| ≈ m/N
and |Jr| ≈ n/N for each node r. The factor matrices U and
V are also assigned to nodes accordingly, i.e., node r stores
and updates UIr: and VJr: as shown in Fig. 1(a).

Data partitioning in distributed NMF differs from that
in parallel NMF. Previous works on parallel NMF [19, 20]
choose to partition U and V along the long dimension, but
we adopt the row-partitioning of U and V as in [21]. To see
why, take the U -subproblem (2) as an example and observe

(a) DSANLS

(b) Secure NMF

Fig. 1. Partitioning data to N nodes with node r’s data shaded.

that it is row-independent in nature, i.e., the r-th row block
of its solution UIr: is given by:

UIr: = arg min
UIr :∈R|Ir|×k

+

∥∥∥MIr: − UIr:V
>
∥∥∥2
F
, (5)

and thus can be solved independently without referring
to any other row blocks of U . The same holds for the
V -subproblem. In addition, no communication is needed
concerning M when solving (5) because MIr: is already
present in node r.

On the other hand, solving (5) requires the entire V
of size n × k, meaning that every node needs to gather
V from all other nodes. This process can easily be the
bottleneck of a naive distributed ANLS implementation. As
we will explain shortly, our DSALNS algorithm alleviates
this problem, since we use a sketched matrix of reduced
size instead of the original complete matrix V .

3.2 SANLS: Sketched ANLS

To better understand DSANLS, we first introduce the
Sketched ANLS (SANLS), i.e., a centralized version of our
algorithm. Recall that in Sec. 2.1.1, at each step of ANLS,
either U or V is fixed and we solve a nonnegative least
square problem (2) or (3) over the other variable. Intuitively,
it is unnecessary to solve this subproblem with high accu-
racy, because we may not have reached the optimal solution
for the fixed variable so far. Hence, when the fixed variable
changes in the next step, this accurate solution from the
previous step will not be optimal anymore and will have
to be re-computed. Our idea is to apply matrix sketching for
each subproblem, in order to obtain an approximate solution
for it at a much lower computational and communication
cost.

Specifically, suppose we are at the t-th iteration of ANLS,
and our current estimations for U and V are U t and V t

respectively. We must solve subproblem (2) in order to
update U t to a new matrix U t+1. We apply matrix sketching
to the residual term of subproblem (2). The subproblem now
becomes:

min
U∈Rm×k

+

∥∥∥MSt − U
(
V t>St

)∥∥∥2
F
, (6)

where St ∈ Rn×d is a randomly-generated matrix. Hence,
the problem size decreases from n× k to d× k. d is chosen

5

to be much smaller than n, in order to sufficiently reduce
the computational cost1. Similarly, we transform the V -
subproblem into:

min
V ∈Rn×k

+

∥∥∥M>S′t − V (U t>S′t
)∥∥∥2

F
, (7)

where S′t ∈ Rm×d′ is also a random matrix with d′ � m.

3.3 DSANLS: Distributed SANLS
Now, we come to our proposal: the distributed version of
SANLS called DSANLS. Since the U -subproblem (6) is the
same as the V -subproblem (7) in nature, here we restrict our
attention to the U -subproblem. The first observation about
subproblem (6) is that it is still row-independent, thus node
r only needs to solve:

min
UIr :∈R|Ir|×k

+

∥∥∥(MSt
)
Ir:
− UIr:

(
V t>St

)∥∥∥2
F
. (8)

For simplicity, we denote:

At
r ,

(
MSt

)
Ir:

and Bt , V t>St, (9)

and the subproblem (8) can be written as:

min
UIr :∈R|Ir|×k

+

∥∥At
r − UIr:B

t
∥∥2
F
. (10)

Thus, node r needs to know matrices At
r and Bt in order to

solve the subproblem.
For At

r , by applying matrix multiplication rules, we get
At

r = (MSt)Ir: = MIr:S
t. Therefore, if St is stored at

node r, At
r can be computed without any communication.

On the other hand, computing Bt =
(
V t>St

)
requires

communication across the whole cluster, since the rows
of V t are distributed across different nodes. Fortunately,
if we assume that St is stored at all nodes again, we can
compute Bt in a much cheaper way. Following block matrix
multiplication rules, we can rewrite Bt as:

B
t
= V

t>
S

t
=

[(
V

t
J1:

)>
· · ·

(
V

t
JN :

)>]
St
J1:

...
St
JN :

 =

N∑
r=1

(
V

t
Jr :

)>
S

t
Jr :.

(11)

Note that the summand B̄t
r ,

(
V t
Jr:

)>
St
Jr:

is a matrix
of size k × d and can be computed locally. As a result,
communication is only needed for summing up the matrices
B̄t

r of size k× d by using MPI all-reduce operation, which is
much cheaper than transmitting the whole Vt of size n× k.

Now, the only remaining problem is the transmission
of St. Since St can be dense, even larger than V t, broad-
casting it across the whole cluster can be quite expensive.
However, it turns out that we can avoid this. Recall that
St is a randomly-generated matrix; each node can generate
exactly the same matrix, if we use the same pseudo-random
generator and the same seed. Therefore, we only need to

1. However, we should not choose an extremely small d, otherwise
the the size of sketched subproblem would become so small that it
can hardly represent the original subproblem, preventing NMF from
converging to a good result. In practice, we can set d = 0.1n for
medium-sized matrices and d = 0.01n for large matrices if m ≈ n.
When m and n differ a lot, e.g., m � n without loss of generality,
we should not apply sketching technique to the V subproblem (since
solving the U subproblem is much more expensive) and simply choose
d = m � n.

Algorithm 2 Distributed SANLS on Node r
Input: MIr : and M:Jr

Parameter: Iteration number T
1: Initialize U0

Ir : ≥ 0, V 0
Jr : ≥ 0

2: Broadcast the random seed
3: for t = 0 to T − 1 do
4: Generate random matrix St ∈ Rn×d
5: Compute Atr ←MIr :S

t

6: Compute B̄tr ←
(
V tJr :

)>
StJr :

7: All-Reduce: Bt ←
∑N
i=1 B̄

t
i

8: Update U t+1
Ir :

by solving minUIr : ‖A
t
r − UIr :Bt‖

9:
10: Generate random matrix S′t ∈ Rm×d

′

11: Compute A′tr ← (M:Jr)> S′t

12: Compute B̄′tr ←
(
U tIr :

)>
S′tIr :

13: All-Reduce: B′t ←
∑N
i=1 B̄

′t
i

14: Update V t+1
Jr :

by solving minVJr : ‖A
′t
r − VJr :B′t‖

15: return UTIr : and V TJr :

broadcast the random seed, which is just an integer, at the
beginning of the whole program. This ensures that each
node generates exactly the same random number sequence
and hence the same random matrices St at each iteration.

In short, the communication cost of each node is reduced
from O(nk) to O(dk) by adopting our sketching technique
for the U -subproblem. Likewise, the communication cost of
each V -subproblem is decreased from O (mk) to O (d′k).
The general framework of our DSANLS algorithm is listed
in Alg. 2.

3.4 Generation of Random Matrices
A key problem in Alg. 2 is how to generate random matrices
St ∈ Rn×d and S′t ∈ Rm×d′ . Here we focus on generating
a random St ∈ Rd×n satisfying Assumption 1. The reason
for choosing such a random matrix is that the correspond-
ing sketched problem would be equivalent to the original
problem on expectation; we will prove this in Sec. 3.5.

Assumption 1. Assume the random matrices are normalized and
have bounded variance, i.e., there exists a constant σ2 such that
E
[
StSt>] = I and V

[
StSt>] ≤ σ2 for all t, where I is the

identity matrix.

Different options exist for such matrices, which have
different computation costs in forming sketched matrices
At

r = MIr:S
t and B̄t

r =
(
V t
Jr:

)>
St
Jr:

. Since MIr: is much
larger than V t

Jr:
and thus computing At

r is more expensive,
we only consider the cost of constructing At

r here.
The most classical choice for a random matrix is one with

i.i.d. Gaussian entries having mean 0 and variance 1/d. It is
easy to show that E

[
StSt>] = I . Besides, Gaussian random

matrix has bounded variance because Gaussian distribution
has finite fourth-order moment. However, since each entry
of such a matrix is totally random and thus no special
structure exists in St, matrix multiplication will be expen-
sive. That is, when given MIr: of size |Ir| × n, computing
its sketched matrix At

r = MIr:S
t requires O(|Ir|nd) basic

operations.
A seemingly better choice for St would be a subsampling

random matrix. Each column of such random matrix is uni-
formly sampled from {e1, e2, . . . , en} without replacement,

6

where ei ∈ Rn is the i-th canonical basis vector (i.e., a
vector having its i-th element 1 and all others 0). We can
easily show that such an St also satisfies E

[
StSt>] = I

and the variance V
[
StSt>] is bounded, but this time con-

structing the sketched matrix At
r = MIr:S

t only requires
O (|Ir|d). Besides, subsampling random matrix can preserve
the sparsity of original matrix. Hence, a subsampling ran-
dom matrix would be favored over a Gaussian random
matrix by most applications, especially for very large-scale
or sparse problems. On the other hand, we observed in our
experiments that a Gaussian random matrix can result in a
faster per-iteration convergence rate, because each column
of the sketched matrix At

r contains entries from multiple
columns of the original matrix and thus is more informative.
Hence, it would be better to use a Gaussian matrix when
the sketch size d is small and thus a O(|Ir|nd) complexity is
acceptable, or when the network speed of the cluster is poor,
hence we should trade more local computation cost for less
communication cost.

Although we only test two representative types of
random matrices (i.e., Gaussian and subsampling random
matrices), our framework is readily applicable for other
choices, such as subsampled randomized Hadamard trans-
form (SRHT) [42, 43] and count sketch [44, 45]. The choice
of random matrices is not the focus of this paper and left for
future investigation.

3.5 Solving Subproblems
Before describing how to solve subproblem (10), let us
make an important observation. As discussed in Sec. 2.2.2,
the sketching technique has been applied in solving linear
systems before. However, the situation is different in matrix
factorization. Note that for the distributed matrix factoriza-
tion problem we usually have:

min
UIr :∈R|Ir|×k

+

∥∥∥MIr: − UIr:V
t>
∥∥∥2
F
6= 0. (12)

So, for the sketched subproblem (10), which can be equiva-
lently written as:

min
UIr :∈R|Ir|×k

+

∥∥∥(MIr: − UIr:V
t>
)
St
∥∥∥2
F
, (13)

where the non-zero entries of the residual matrix(
MIr: − UIr:V

t>)will be scaled by the matrix St at different
levels. As a consequence, the optimal solution will be shifted
because of sketching. This fact alerts us that for SANLS, we
need to update U t+1 by exploiting the sketched subproblem
(10) to step towards the true optimal solution and avoid
convergence to the solution of the sketched subproblem.

3.5.1 Projected Gradient Descent
A natural method is to use one step2 of projected gradient
descent for the sketched subproblem:

U t+1
Ir:

= max

{
U t
Ir: − ηt ∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

∣∣∣
UIr :=Ut

Ir :

, 0

}
= max

{
U t
Ir: − 2ηt

[
U t
Ir:B

tBt> −At
rB

t>
]
, 0
}
,

(14)

2. Note that we only apply one step of projected gradient descent
here to avoid solution shifted.

where ηt > 0 is the step size and max{·, ·} denotes the
entry-wise maximum operation. In the gradient descent step
(14), the computational cost mainly comes from two matrix
multiplications: BtBt> and At,rB

t>. Note that At
r and Bt

are of sizes |Ir| × d and k× d respectively, thus the gradient
descent step takes O (kd(|Ir|+ k)) in total.

To exploit the nature of this algorithm, we further ex-
pand the gradient:

∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

= 2
[
UIr:B

tBt> −At
rB

t>
]

(9)
=2

[
UIr:

(
V t>St

)(
V t>St

)>
−
(
MIr:S

t
) (
V t>St

)>]
=2
[
UIr:V

t>
(
StSt>

)
V t −MIr:

(
StSt>

)
V t
]
.

(15)
By taking the expectation of the above equation, and using
the fact E

[
StSt>] = I , we have:

E
[
∇UIr :

∥∥At
r − UIr:B

t
∥∥2
F

]
= 2

[
UIr:V

t>V t −MIr:V
t
]

=∇UIr :

∥∥∥MIr: − UIr:V
t>
∥∥∥2
F

(16)
which means that the gradient of the sketched subproblem
is equivalent to the gradient of the original problem on
expectation. Therefore, such a step of gradient descent can
be interpreted as a (generalized) stochastic gradient descent
(SGD) [46] method on the original subproblem. Thus, ac-
cording to the theory of SGD, we naturally require the step
sizes {ηt} to be diminishing, i.e., ηt → 0 as t increases.

3.5.2 Proximal Coordinate Descent

However, it is well known that the gradient descent method
converges slowly, while the coordinate descent method,
namely the HALS method for NMF, is quite efficient [10].
Still, because of its very fast convergence, HALS should
not be applied to the sketched subproblem directly because
it shifts the solution away from the true optimal solution.
Therefore, we would like to develop a method which re-
sembles HALS but will not converge towards the solutions
of the sketched subproblems.

To achieve this, we add a regularization term to the
sketched subproblem (10). The new subproblem becomes:

min
UIr :∈R|Ir|×k

+

∥∥At
r − UIr:B

t
∥∥2
F

+ µt

∥∥UIr: − U t
Ir:

∥∥2
F
, (17)

where µt > 0 is a parameter. Such regularization is remi-
niscent to the proximal point method [47] and parameter µt

controls the step size as 1/ηt in projected gradient descent.
We therefore require µt → +∞ to enforce the convergence
of the algorithm, e.g., µt = t.

At each step of proximal coordinate descent, only one
column of UIr:, say UIr,j where j ∈ {1, 2, . . . , k}, is up-
dated:

min
UIr :j∈R|Ir|+

∥∥∥∥At
r−UIr:jB

t
j:−
∑
l 6=j

UIr:lB
t
l:

∥∥∥∥2
F

+µt

∥∥UIr:j − U t
Ir:j

∥∥2
2
.

(18)
It is not hard to see that the above problem is still row-
independent, which means that each entry of the row vector

7

Algorithm 3 Proximal Coordinate Descent for Local Sub-
problem (10) on Node r
Parameter: µt > 0

1: for j = 1 to k do
2: T ← µtU

t
Ir :j +AtrB

t>
j:

3: for l = 1 to j − 1 do
4: T ← T −

(
Btl:B

t>
j:

)
U t+1
Ir :l

5: for l = j + 1 to k do
6: T ← T −

(
Btl:B

t>
j:

)
U tIr :l

7: U t+1
Ir :j
← max

{
T/
(
Btj:B

t>
j: + µt

)
, 0
}

8: return U t+1
Ir :

UIr:j can be solved independently at each node. For exam-
ple, for any i ∈ Ir , the solution of U t+1

i:j is given by:

U t+1
i:j = arg min

Ui:j≥0

∥∥∥∥ (At
r

)
i:
− Ui:jB

t
j: −

∑
l 6=j

Ui:lB
t
l:

∥∥∥∥2
2

+ µt

∥∥Ui:j − U t
i:j

∥∥2
2

= max

{
µtU

t
i:j + (At

r)i:B
t>
j: −

∑
l 6=j Ui:lB

t
l:B

t>
j:

Bt
j:B

t>
j: + µt

, 0

}
.

(19)
At each step of coordinate descent, we choose the col-

umn j from {1, 2, . . . , k} successively. When updating col-
umn j at iteration t, the columns l < j have already been
updated and thus UIr:l = U t+1

Ir:l
, while the columns l > j are

old so UIr:l = U t
Ir:l

.
The complete proximal coordinate descent algorithm

for the U -subproblem is summarized in Alg. 3. When up-
dating column j, computing the matrix-vector multiplica-
tion At

rB
t>
j: takes O(d|Ir|). The whole inner loop takes

O (k (d+ |Ir|)) because one vector dot product of length d is
required for computing each summand and the summation
itself needs O (k|Ir|). Considering that there are k columns
in total, the overall complexity of coordinate descent is
O (k((k + d) |Ir|+ kd)). Typically, we choose d > k, so the
complexity can be simplified to O (kd (|Ir|+ k)), which is
the same as that of gradient descent.

Since proximal coordinate descent is much more efficient
than projected gradient descent, we adopt it as the default
subproblem solver within DSANLS.

3.6 Theoretical Analysis
3.6.1 Complexity Analysis
We now analyze the computational and communication
costs of our DSANLS algorithm, when using subsampling
random sketch matrices. The computational complexity at
each node is:

O
(generating St︷︸︸︷

d +

constructing At
r and Bt︷︸︸︷

|Ir|d +

solving subproblem︷ ︸︸ ︷
kd(|Ir|+ k)

)
= O (kd(|Ir|+ k)) ≈ O

(
kd
(m
N

+ k
))

.

(20)

Moreover, as we have shown in Sec. 3.3, the communication
cost of DSANLS is O (kd).

On the other hand, for a classical implementation of
distributed HALS [48], the computational cost is:

O (kn (|Ir|+ k)) ≈ O
(
kn
(m
N

+ k
))

(21)

and the communication cost is O (kn) due to the all-
gathering of V t’s.

Comparing the above quantities, we observe an n/d� 1
speedup of our DSANLS algorithm over HALS in both
computation and communication. However, we empirically
observed that DSANLS has a slower per-iteration conver-
gence rate (i.e., it needs more iterations to converge). Still,
as we will show in the next section, in practice, DSANLS
is superior to alternative distributed NMF algorithms, after
taking all factors into account.

3.6.2 Convergence Analysis
Here we provide theoretical convergence guarantees for the
proposed SANLS and DSANLS algorithms. We show that
SANLS and DSANLS converge to a stationary point.

To establish convergence result, Assumption 2 is needed
first.

Assumption 2. Assume all the iterates U t and V t have uni-
formly bounded norms, which means that there exists a constant
R such that ‖U t‖F ≤ R and ‖V t‖F ≤ R for all t.

We experimentally observed that this assumption holds
in practice, as long as the step sizes used are not too large.
Besides, Assumption 2 can also be enforced by imposing
additional constraints, such as:

Ui:l ≤
√

2‖M‖F and Vj:l ≤
√

2‖M‖F ∀i, j, l, (22)

with which we have R = max{m,n}k
√

2‖M‖F . Such
constraints can be very easily handled by both of our
projected gradient descent and regularized coordinate de-
scent solvers. Lemma 1 shows that imposing such extra
constraints does not prevent us from finding the global
optimal solution.

Lemma 1. If the optimal solution to the original problem (1)
exists, there is at least one global optimal solution in the domain
(22).

Based on Assumptions 1 (see Sec. 3.4) and Assumption
2, we now can formally show our main convergence result:

Theorem 1. Under Assumptions 1 and 2, if the step sizes satisfy∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞, for projected gradient descent,

or
∑∞

t=1 1/µt = ∞ and
∑∞

t=1 1/µ2
t < ∞, for regularized

coordinate descent, then SANLS and DSANLS with either sub-
problem solver will converge to a stationary point of problem (1)
with probability 1.

The proofs of Lemma 1 and Theorem 1 can be found in
Appendices A and B.

4 SECURE DISTRIBUTED NMF
In this section, we provide our solutions to the problem of
secure distributed NMF over federated data.

4.1 Extend DSANLS to Secure Setting
DSANLS and all lines of works discussed in Sec. 2.2.1 store
copies of M across two-dimensional (shown in Fig. 1(a)),
and exploit the independence of local update computation
for rows of U and V to apply communication-optimal
matrix multiplication. They cannot be applied directly to

8

secure distributed NMF setting. The reason is that, in secure
distributed NMF setting (shown in Fig. 1(b)), only one
column copy is stored in each node, while the others cannot
be disclosed.

Nevertheless, DSANLS can be adapted to this secure
setting with modification, but only for one or limited itera-
tions. The reason is illustrated in Theorem 2. In modified
DSANLS algorithm, each node still takes charge of updat-
ing UIr: and VJr: as before, but only one copy M:Jr of
M = [M1,M2, ...,MN] will be stored in node r. Thus, V -
subproblem is exactly the same as in DSANLS. Differently,
we need to use MPI-AllReduce function to gather M:JrS

t

from all nodes before each iteration of U -subproblem, so
that each node has access to fully sketched matrix MSt

to solve sketched U -subproblem. Note that here random
matrix St not only helps reduce the communication cost
from O(mn) to O(md) with a smaller NLS problem, but
also conceals the full matrix M in each iteration.

Theorem 2. M cannot be recovered only using information about
MS (or SM) and S.

Proof. Assume S is a square matrix. Given MS (or SM) and
S, we are able to get M by M = MSS−1 (or M = S−1SM).
However, the numbers of row and column are highly im-
balanced in S and it is not a square matrix. Therefore M
cannot be recovered only using information about MS (or
SM) and S.

However, NMF is an iterative algorithm (shown in
Alg. 1). Secure computation in limited iterations cannot
guarantee an acceptable accuracy for practical use due to
the following reason:

Theorem 3. M can be recovered after enough iterations.

Proof. If we view M · S = MS as a system of linear
equations with a variable matrix M and constant matrices
S and MS. Each row of M can be solved by a standard
Gaussian Elimination solver, given a sufficient number of
(S, MS) pairs.

Theorem 3 suggests that DSANLS algorithm suffers from
the dilemma of choosing between information disclosure
and unacceptable accuracy, making it impractical to real
applications. Therefore, we need to propose new practical
solutions to secure distributed NMF.

4.2 Synchronous Framework
A straightforward solution to secure distributed NMF is
that each node solves a local NMF problem with a local
copy of U (denoted as U(r) for node r). Periodically, nodes
communicate with each other, and update local copy of U
to the aggregation of all local copies U(j), j ∈ {1, · · · , N}
by All-Reduce operation. We name this method as Syn-SD
under synchronous setting. The detailed algorithm is shown
in Alg. 4. Within inner iterations, every node maintains
its own copy of U (i.e., U(r)) by solving the regular NMF
problem. Every T2 rounds, different local copies of U will
be averaged through nodes by using

∑N
j=1 U(j)/N . Note

that, U(r) is one copy of the whole matrix U stored locally
in node r, while VJr: is the corresponding part of the matrix
V = [VJ1:, VJ2:, ..., VJN :] stored in node r.

Algorithm 4 Syn-SD: Secure Distributed NMF on node r
Input: M:Jr

Parameter: Iteration numbers T1, T2

1: initialize U0
(r) ≥ 0, V 0

Jr : ≥ 0
2: for t1 = 0 to T1 − 1 do
3: for t2 = 1 to T2 do
4: t← t1 × T2 + t2
5: U t(r) ← update(M:Jr , U t−1

(r) , V t−1
Jr :

)
6: V tJr : ← update(M:Jr , U t(i), V

t−1
Jr :

)

7: All-Reduce: U t(r) ←
∑N

j=1 U
t
(j)

N

8: return U t(r) and V tJr :

Algorithm 5 Syn-SSD: Secure Sketched Distributed NMF on
node r
Input: M:Jr

Parameter: Iteration numbers T1, T2

1: initialize U0
(i) ≥ 0, V 0

Jr : ≥ 0
2: for t1 = 0 to T1 − 1 do
3: for t2 = 1 to T2 do
4: t← t1 × T2 + t2
5: Generate random matrix St1
6: U t(r) ← update(M:JrS

t
1, U t−1

(r) , V t−1
Jr :

St1)
7: Generate random matrix St2
8: All-Reduce: SU

t ←
∑N

j=1 S
t
2U

t
(j)

N

9: V tJr : ← update(St2M:Jr , SU
t
, V t−1

Jr :
)

10: All-Reduce: U t(r) ←
∑N

j=1 U
t
(j)

N

11: return U t(r) and V tJr :

In Syn-SD, the local copy U(r) in node r will be updated
to a uniform aggregation of local copies from all nodes
periodically. Small number of inner iteration T2 incurs large
communication cost caused by All-Reduce. Larger T2 may
lead to slow convergence, since each node does not share
any information of its local copy U(r) inside the inner
iterations.

To improve the efficiency of data exchange, we incorpo-
rate matrix sketching to Syn-SD, and propose an improved
version called Syn-SSD. In Syn-SSD, information of local
copies is shared across cluster nodes more frequently, with
communication overhead roughly the same as Syn-SD. As
shown in Alg. 5, the sketched version StU(r) of the local
copy U(r) is exchanged within each inner iteration. There
are two advantages of applying matrix sketching: (1) Since
the sketched matrix has a much smaller size, All-Reduce
operation causes much less communication cost, making
it affordable with higher frequency. (2) Solving a sketched
NLS problem can also reduce the computation cost due to
a reduced problem size of solving U(r) and VJr: for each
node. It is worth noting that St

1 is exactly the same for
each node by using the same seed and generator. The same
for St

2. But St
1 and St

2 are not necessarily equivalent. With
such a constraint, the algorithm is equivalent to NMF in
single-machine environment and the convergence can be
guaranteed.

It is straightforward to see that Syn-SD and Syn-SSD
satisfy Definition 1 and they are (N − 1)-private protocols,
since VJr: and M:Jr are only seen by node r.

9

Algorithm 6 Asyn-SD, Asyn-SSD: Server part
Parameter: Relaxation parameter ρ

1: initialize U0 ≥ 0
2: t← 0 . t is the update counter.
3: while not stopping do
4: Receive U t(r) from client node r
5: ωt ← ρ

ρ+t
. ωt is the relaxation weight.

6: U t ← (1− ωt)U t + ωtU t(r)
7: Send U t back to client node r
8: t← t+ 1
9: return U t

Algorithm 7 Asyn-SD, Asyn-SSD: Client part of node r
Input: M:Jr

Parameter: Iteration number T
1: initialize V 0

Jr : ≥ 0
2: while Server not stopping do
3: Receive U from server
4: U0

(r) ← U
5: for t = 1 to T do
6: V tJr : ← update(M:Jr , U t−1

(r) , V t−1
Jr :

)
7: U t(r) ← update(M:Jr , U t−1

(r) , V tJr :) . For Asyn-SSD,
replace it with Lines 5-6 of Alg. 5.

8: Send UT(r) to server
9: return V TJr :

4.3 Asynchronous Framework

In Syn-SD and Syn-SSD, each node must stall until all
participating nodes reach the synchronization barrier be-
fore the All-Reduce operation. However, highly imbalanced
data in real scenario of federated data mining may cause
severe workload imbalance problem. The synchronization
barrier will force nodes with low workload to halt, making
synchronous algorithms less efficient. In this section, we
study secure distributed NMF in an asynchronous (i.e.,
server/client architecture) setting and propose correspond-
ing asynchronous algorithms.

First of all, we extend the idea of Syn-SD to asyn-
chronous setting and name the new method Asyn-SD. In
Asyn-SD, the server (in Alg. 6) takes full charge of updating
and broadcasting U t. Once received U t

(r) from the client
node r, the server would update U t locally, and return the
latest version of U t back to the client node r for further
computing. Note that the server may receive local copies
of U t from clients in an arbitrary order. Consequently, we
cannot use the same operation of All-Reduce as Syn-SD any
more. Instead, U t in server side is updated by the weighted
sum of current U t and newly received local copy U t

(r) from
client node r. Here the relaxation weight ωt asymptotically
converges to 0. Thus a converged U t is guaranteed on server
side. Our experiments in Sec. 5 suggest that this relaxation
has no harm to factorization convergence.

On the other hand, client nodes of Asyn-SD (in Alg. 7)
behave similarly as nodes in Syn-SD. Clients locally solve
the standard NMF problem for T iterations, and then update
local U t

(r) by communicating only with the server node.
Unlike Syn-SD, Asyn-SD does not have a global synchro-
nization barrier. Client nodes in Asyn-SD independently
exchange their local copy U t

(r) with the server without an
All-Reduce operation.

TABLE 1
Statistics of datasets

Dataset #Rows #Columns Non-zero values Sparsity

BOATS 216,000 300 64,800,000 0%
MIT CBCL FACE 2,429 361 876,869 0%

MNIST 70,000 784 10,505,375 80.86%
GISETTE 13,500 5,000 8,770,559 87.01%

Reuters (RCV1) 804,414 47,236 60,915,113 99.84%
DBLP 317,080 317,080 2,416,812 99.9976%

Similarly, Syn-SSD can be extended to its asynchronous
version Asyn-SSD. However, the algorithm for clients is
more constrained and conservative in sketching. Note that
the random sketching matrices S1 and S2 (in Alg. 5) should
be the same across the nodes in the same summation in
order to have a meaningful summation of sketched matrices.
However, enforcing the same St

2 for updating sketched U
will result in a synchronous All-Reduce operation. There-
fore, U cannot be sketched in asynchronous algorithms and
we only consider sketching VJr: in Asyn-SSD (Line 7 in
Alg. 7). The server part of Asyn-SSD is the same as Asyn-SD
in Alg. 6.

Similar to synchronous versions, Asyn-SD and Asyn-
SSD satisfy Definition 1 and they are (N − 1)-private proto-
cols, since VJr: and M:Jr are only seen by node r.

5 EXPERIMENTAL EVALUATION

This section includes an experimental evaluation of our
algorithms on both dense and sparse real data matrices.
The implementation of our methods is available at https:
//github.com/qianyuqiu79/DSANLS.

5.1 Setup
We use several (dense and sparse) real datasets as Qian
et al. [49] for evaluation. They corresponds to different
NMF tasks, including video analysis, image processing,
text mining and community detection. Their statistics are
summarized in Tab. 1.

We conduct our experiments on a Linux cluster with
16 nodes. Each node contains 8-core Intelr CoreTM i7-3770
CPU @ 1.60GHz cores and 16 GB of memory. Our algorithms
are implemented in C++ using the Intelr Math Kernel
Library (MKL) and Message Passing Interface (MPI). By
default, we use 10 nodes and set the factorization rank k
to 100. We also report the impact of different node number
(2-16) and k (20-500). We use µt = α + βt [50], do the grid
search for α and β in the range of {0.1, 1, 10} for each dataset
and report the best results. Because the use of Gaussian
random matrices is too slow on large datasets RCV1 and
DBLP, we only use subsampling random matrices for them.

For the general acceleration of NMF, we assess DSANLS
with subsampling and Gaussian random matrices, denoted
by DSANLS/S and DSANLS/G, respectively, using prox-
imal coordinate descent as the default subproblem solver.
As mentioned in [5, 8], it is unfair to compare with a
Hadoop implementation. We only compare DSANLS with
MPI-FAUN3 (MPI-FAUN-MU, MPI-FAUN-HALS, and MPI-
FAUN-ABPP implementations), which is the first and the

3. https://github.com/ramkikannan/nmflibrary

https://github.com/qianyuqiu79/DSANLS
https://github.com/qianyuqiu79/DSANLS
https://github.com/ramkikannan/nmflibrary

10

state-of-the-art C++/MPI implementation with MKL and
Armadillo. For parameters pc and pr in MPI-FAUN, we
use the optimal values for each dataset, according to the
recommendations in [5, 8].

For the problem of secure distributed NMF, we evaluate
all proposed methods: Syn-SD, Syn-SSD with sketch on
U (denoted as Syn-SSD-U), Syn-SSD with sketching on V
(denoted as Syn-SSD-V), Syn-SSD with sketching on both U
and V (denoted as Syn-SSD-UV), Asyn-SD, Asyn-SSD with
sketching on V (denoted as Asyn-SSD-V), using proximal
coordinate descent as the default subproblem solver. We do
not list secure building block methods as baselines, since
communication overhead is heavy in these multi-round
handshake protocols and it is unfair to compare them with
MPI based methods. For example, a matrix sum described
by Duan and Canny [39] results in 5X communication
overhead compared to a MPI all-reduce operation.

We use the relative error of the low rank approximation
compared to the original matrix to measure the effectiveness
of different NMF approaches. This error measure has been
widely used in previous work [5, 8, 51] and is formally
defined as

∥∥M − UV >∥∥
F
/ ‖M‖F .

5.2 Evaluation on Accelerating General NMF

5.2.1 Performance Comparison

Since the time for each iteration is significantly reduced by
our proposed DSANLS compared to MPI-FAUN, in Fig. 2,
we show the relative error over time for DSANLS and MPI-
FAUN implementations of MU, HALS, and ANLS/BPP on
the 6 real public datasets. Observe that DSANLS/S performs
best in all 6 datasets, although DSANLS/G has faster per-
iteration convergence rate. MU converges relatively slowly
and usually has a bad convergence result; on the other hand
HALS may oscillate in the early rounds4, but converges
quite fast and to a good solution. Surprisingly, although
ANLS/BPP is considered to be the state-of-art NMF algo-
rithm, it does not perform well in all 6 datasets. As we will
see, this is due to its high per-iteration cost.

5.2.2 Scalability Comparison

We vary the number of nodes used in the cluster from 2
to 16 and record the average time for 100 iterations of each
algorithm. Fig. 3 shows the reciprocal of per-iteration time
as a function of the number of nodes used. All algorithms
exhibit good scalability for all datasets (nearly a straight
line), except for FACE (i.e., Fig. 3(a)). FACE is the smallest
dataset, whose number of columns is 300, while k is set to
100 by default. When n/N is smaller than k, the complexity
is dominated by k, hence, increasing the number of nodes
does not reduce the computational cost, but may increase
the communication overhead. In general, we can observe
that DSANLS/Subsampling has the lowest per-iteration cost
compared to all other algorithms, and DSANLS/Gaussian
has similar cost to MU and HALS. ANLS/BPP has the
highest per-iteration cost, explaining the bad performance
of ANLS/BPP in Fig. 2.

4. HALS does not guarantee the objective function to decrease mono-
tonically.

5.2.3 Performance Varying the Value of k
Although tuning the factorization rank k is outside the
scope of this paper, we compare the performance of
DSANLS with MPI-FAUN varying the value of k from 20
to 500 on RCV1. Observe from Fig. 4 and Fig. 2(e) (k = 100)
that DSANLS outperforms the state-of-art algorithms for all
values of k. Naturally, the relative error of all algorithms
decreases with the increase of k, but they also take longer to
converge.

5.2.4 Comparison with Projected Gradient Descent
In Sec. 3.5, we claimed that our proximal coordinate descent
approach (denoted as DSANLS-RCD) is faster than pro-
jected gradient descent (also presented in the same section,
denoted as DSANLS-PGD). Fig. 5 confirms the difference in
the convergence rate of the two approaches regardless of the
random matrix generation approach.

5.3 Evaluation on Secure Distributed NMF

5.3.1 Performance Comparison for Uniform Workload
In Fig. 6, we show the relative error over time for secure
distributed NMF algorithms on the 4 real public datasets,
with a uniformly partition of columns. Syn-SSD-UV per-
forms best in BOAT, FACE and GISETTE. As we will see
in the next section, this is due to the fact that per-iteration
cost of Syn-SSD-UV is significantly reduced by sketching.
On MNIST, Syn-SSD-U and Syn-SSD-V has a better conver-
gence in terms of relative error. Syn-SD and Asyn-SD con-
verge relatively slowly and usually have a bad convergence
result; on the other hand Asyn-SSD-V converges slowly but
consistently generates better results than Syn-SD and Asyn-
SD.

5.3.2 Performance Comparison for Imbalanced Workload
To evaluate the performance of different methods when
the workload is imbalanced, we conduct experiments on
skewed partition of input matrix. Among 10 worker nodes,
node 0 is assigned with 50% of the columns, while other
nodes have a uniform partition of the rest of columns.
The measure for error is the same as the case of uniform
workload.

It can be observed that in imbalanced workload, asyn-
chronous algorithms generally outperform synchronous al-
gorithms. Asyn-SSD-V gives the best result in terms of rel-
ative error over time, except dataset FACE. In FACE, Asyn-
SD slowly converges to the best result. Unlike the case of
uniform workload in Fig. 6, the sketching method Syn-SSD-
UV does not perform well in imbalanced workload. Syn-SD
are basically inapplicable in BOATS, MNIST and GISETTE
datasets due to its slow speed. In sparse datasets MNIST
and GISETTE, Syn-SSD-V and Syn-SSD-U can converge to a
good result, but they do not generate satisfactory results on
dense dataset BOATS and FACE.

5.3.3 Scalability Comparison
We vary the number of nodes used in the cluster from 2
to 16 and record the average time for 100 iterations of each
algorithm. Fig. 8 shows the reciprocal of per-iteration time as
a function of the number of nodes for uniform workload. All

11

0 5 10 15 20 25 30 35 40 45
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) BOATS

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) FACE

0 2 4 6 8 10 12 14 16 18
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(c) MNIST

0 1 2 3 4 5 6 7 8
Time (s)

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(d) GISETTE

0 100 200 300 400 500
Time (s)

0.80

0.85

0.90

0.95

1.00

1.05

Re
la

tiv
e

Er
ro

r

SANLS/S
MU
HALS
ANLS/BPP

(e) RCV1

0 10 20 30 40 50 60 70 80
Time (s)

0.94

0.96

0.98

1.00

1.02

1.04

Re
la

tiv
e

Er
ro

r

SANLS/S
MU
HALS
ANLS/BPP

(f) DBLP

Fig. 2. Relative error over time for general distributed NMF

2 4 6 8 10 12 14 16
Node number

50

100

150

200

1/
tim

e
(s
−

1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(a) FACE

2 4 6 8 10 12 14 16
Node number

0

5

10

15

20

1/
tim

e
(s
−

1)

DSANLS/S
DSANLS/G
MU
HALS
ANLS/BPP

(b) MNIST

2 4 6 8 10 12 14 16
Node number

0.00

0.05

0.10

0.15

0.20

0.25

1/
tim

e
(s
−

1)

DSANLS/S
MU
HALS
ANLS/BPP

(c) RCV1

2 4 6 8 10 12 14 16
Node number

0.0

0.2

0.4

0.6

0.8

1.0

1/
tim

e
(s
−

1) DSANLS/S
MU
HALS
ANLS/BPP

(d) DBLP

Fig. 3. Reciprocal of per-iteration time as a function of cluster size for general distributed NMF

0 20 40 60 80 100
Time (s)

0.90

0.92

0.94

0.96

0.98

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(a) k=20

0 50 100 150 200 250
Time (s)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(b) k=50

0 200 400 600 800 1000 1200 1400
Time (s)

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(c) k=200

0 1000 2000 3000 4000
Time (s)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
el

at
iv

e
E

rr
or

DSANLS/S
MU
HALS
ANLS/BPP

(d) k=500

Fig. 4. Relative error over time for general distributed NMF, varying k value

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(a) BOATS

0 20 40 60 80 100
Iteration

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(b) FACE

0 20 40 60 80 100
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-RCD/G
DSANLS-PGD/S
DSANLS-PGD/G

(c) GISETTE

0 20 40 60 80 100
Iteration

0.80

0.85

0.90

0.95

1.00

1.05

R
el

at
iv

e
E

rr
or

DSANLS-RCD/S
DSANLS-PGD/S

(d) RCV1

Fig. 5. Relative error per-iteration of different subproblem solvers for general distributed NMF

algorithms exhibit good scalability for all datasets (nearly
a straight line), except for FACE (i.e., Fig. 8(b)). FACE is
the smallest dataset, whose number of columns is 361 and
number of row is 2,429. When n/N is smaller than k = 100,
the time consumed by subproblem solvers is dominated

by the communication overhead. Hence, increasing the
number of nodes is does not reduce per-iteration time. In
general, we can observe that Syn-SSD-UV has the lowest
per-iteration time compared to all other algorithms, and
also has the best scalability as we can see from the steepest

12

0 25 50 75 100 125 150 175
Time (s)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

(a) BOATS

0 5 10 15 20
Time (s)

10 1

100

Re
la

tiv
e

Er
ro

r

(b) FACE

0 100 200 300 400 500 600 700 800
Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

(c) MNIST

0 20 40 60 80 100
Time (s)

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

Syn-SD
Syn-SSD-U
Syn-SSD-V
Syn-SSD-UV
Asyn-SD
Asyn-SSD-V

(d) GISETTE

Fig. 6. Relative error over time for uniform workload in secure distributed NMF

0 100 200 300 400 500
Time (s)

10 4

10 3

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

(a) BOATS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

10 2

10 1

100

Re
la

tiv
e

Er
ro

r

(b) FACE

0 50 100 150 200 250 300
Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

Er
ro

r

(c) MNIST

0 100 200 300 400 500
Time (s)

0.7

0.8

0.9

1.0

1.1

1.2

Re
la

tiv
e

Er
ro

r

Syn-SD
Syn-SSD-U
Syn-SSD-V
Syn-SSD-UV
Asyn-SD
Asyn-SSD-V

(d) GISETTE

Fig. 7. Relative error over time for imbalanced workload in secure distributed NMF

2 4 6 8 10 12 14 16
#Machines

0.0

0.2

0.4

0.6

0.8

1/
tim

e
(s

^-
1)

(a) BOATS

2 4 6 8 10 12 14 16
#Machines

0

2

4

6

8

1/
tim

e
(s

^-
1)

(b) FACE

2 4 6 8 10 12 14 16
#Machines

0.00

0.03

0.06

0.09

0.12

0.15

1/
tim

e
(s

^-
1)

(c) MNIST

2 4 6 8 10 12 14 16
#Machines

0.0

0.3

0.6

0.9

1.2

1/
tim

e
(s

^-
1)

Syn-SD
Syn-SSD-U
Syn-SSD-V
Syn-SSD-UV
Asyn-SD
Asyn-SSD-V

(d) GISETTE

Fig. 8. Reciprocal of per-iteration time for uniform workload in secure distributed NMF

2 4 6 8 10 12 14 16
#Machines

0.00

0.05

0.10

0.15

0.20

0.25

1/
tim

e
(s

^-
1)

(a) BOATS

2 4 6 8 10 12 14 16
#Machines

0.0

1.5

3.0

4.5

6.0

1/
tim

e
(s

^-
1)

(b) FACE

2 4 6 8 10 12 14 16
#Machines

0.00

0.02

0.04

0.06

0.08

1/
tim

e
(s

^-
1)

(c) MNIST

2 4 6 8 10 12 14 16
#Machines

0.00

0.06

0.12

0.18

0.24

0.30

1/
tim

e
(s

^-
1)

Syn-SD
Syn-SSD-U
Syn-SSD-V
Syn-SSD-UV
Asyn-SD
Asyn-SSD-V

(d) GISETTE

Fig. 9. Reciprocal of per-iteration time for imbalanced workload in secure distributed NMF

slope. Synchronous averaging has the highest per-iteration
cost, explaining the bad performance in uniform workload
experiments in Fig. 6.

In imbalanced workload settings, it is not surprising
that asynchronous algorithms outperform synchronous al-
gorithms with respect to scalability, as shown in Fig. 9. Syn-
chronization barriers before All-Reduce operations severely
affect the scalability of synchronous algorithms, resulting in
a nearly flat curve for per-iteration time. The per-iteration
time of Syn-SSD-UV is satisfactory when cluster size is
small. However, it does not get significant improvements
when more nodes are deployed. On the other hand, asyn-
chronous algorithms demonstrate decent scalability as num-
ber of nodes grows. The short average iteration time of
Asyn-SD and Asyn-SSD-V, shown in Fig. 9, also explains
their superior performance over their synchronous counter-
parts in Fig. 7.

In conclusion, with an overall evaluation of convergence
and scalability, Syn-SSD-UV should be adopted for secure
distributed NMF under uniform workload, while Asyn-

SSD-V is a more reasonable choice for secure distributed
NMF under imbalanced workload.

6 CONCLUSION

In this paper, we studied the acceleration and security
problems for distributed NMF. Firstly, we presented a novel
distributed NMF algorithm DSANLS that can be used for
scalable analytics of high dimensional matrix data. Our
approach follows the general framework of ANLS, but
utilizes matrix sketching to reduce the problem size of
each NLS subproblem. We discussed and compared two
different approaches for generating random matrices (i.e.,
Gaussian and subsampling random matrices). We presented
two subproblem solvers for our general framework, and
theoretically proved that our algorithm is convergent. We
analyzed the per-iteration computational and communica-
tion cost of our approach and its convergence, showing
its superiority compared to the state-of-the-art. Secondly,
we designed four efficient distributed NMF methods in
both synchronous and asynchronous settings with a security

13

guarantee. They are the first distributed NMF methods over
federated data, where data from all parties are utilized to-
gether in NMF for better performances and the data of each
party remains confidential without leaking any individual
information to other parties during the process. Finally, we
conducted extensive experiments on several real datasets
to show the superiority of our proposed methods. In the
future, we plan to study the applications of DSANLS in
dense or sparse tensors and consider more practical designs
of asynchronous algorithm for secure distributed NMF.

7 ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (no. 61972328).

APPENDIX A
PROOF OF LEMMA 1

Proof of Lemma 1. Suppose (U∗, V ∗) is the global optimal
solution but fails to satisfy Eq. 22 in the paper. If there exist
indices i, j, l such that U∗i:l · V ∗j:l > 2‖M‖F , then

∥∥∥M − U∗V ∗>∥∥∥2
F
≥
(
U∗i:l · V ∗j:l −Mi:j

)2
> (2‖M‖F − ‖M‖F)2

≥ ‖M‖2F .
(23)

However, simply choosing U = 0 and V = 0 will yield
a smaller error ‖M‖2F , which contradicts the fact that
(U∗, V ∗) is optimal. Therefore, if we define αl = maxi U

∗
i:l

and βl = maxj V
∗
j:l, we must have αl ·βl ≤ 2‖M‖F for each

l. Now we construct a new solution (U, V) by:

U i:l = U∗i:l ·
√
βl/αl and V j:l = V ∗j:l ·

√
αl/βl. (24)

Note that

U i:l ≤ αl ·
√
βl/αl =

√
αl · βl ≤

√
2‖M‖F ,

V j:l ≤ βl ·
√
αl/βl =

√
αl · βl ≤

√
2‖M‖F ,

(25)

so (U, V) satisfy Eq. 22 in the paper. Besides,∥∥∥M − U V >∥∥∥2
F

=
∑
i,j

(
Mi:j −

∑
l

U i:lV j:l

)2
=
∑
i,j

(
Mi:j −

∑
l

U∗i:l ·
√
βl/αl · V ∗j:l ·

√
αl/βl

)2
=
∑
i,j

(
Mi:j −

∑
l

U∗i:l · V ∗j:l
)2

= ‖M − U∗V ∗>‖2F ,

(26)

which means that (U, V) is also an optimal solution. In
short, for any optimal solution of Eq. 1 outside the domain
shown in Eq. 22, there exists a corresponding global optimal
solution satisfying the domain shown in Eq. 22, which
further means that there exists at least one optimal solution
in the domain shown in Eq. 22.

APPENDIX B
PROOF OF THEOREM 1
For simplicity, we denote f(U, V) = ‖M − UV >‖2F , f̃S =
‖MS − U(V >S)‖2F , and f̃ ′S′ = ‖M>S′ − V (U>S′)‖2F . Let
Gt and G̃t denote the gradients of the above quantities, i.e.,

Gt , ∇U f(U, V t)
∣∣
U=Ut , G̃t , ∇U f̃St(U, V t)

∣∣∣
U=Ut

,

G′t , ∇V f(U t+1, V)
∣∣
V=V t , G̃′t , ∇V f̃ ′S′t(U

t+1, V)
∣∣∣
V=V t

.

(27)
Besides, let

∆t ,
1

ηt

(
U t − U t+1

)
and ∆′t ,

1

ηt

(
V t − V t+1

)
. (28)

B.1 Preliminary Lemmas

To prove Theorem 1, we need following lemmas (which are
proved in Sec. B.3):

Lemma 2. Under Assumptions 1 and 2, conditioned on U t and
V t, G̃t and G̃′t are unbiased estimators ofGt andG′t respectively
with uniformly bounded variance.

Lemma 3. Assume X is a nonnegative random variable with
mean µ and variance σ2, and c ≥ 0 is a constant. Then we have

E [min{X, c}] ≥ min
{
c,
µ

2

}
·
(

1− 4σ2

4σ2 + µ2

)
. (29)

Lemma 4. Define the function

φ(x, y, z) = min
{
|xy|, y2/2

}
·
(

1− 4z2

4z2 + y2

)
≥ 0. (30)

Conditioned on U t and V t, there exists an uniform constant
σ′2 > 0 such that

E[Gt
i:l ·∆t

i:l] ≥ φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) (31)

and
E[G′tj:l ·∆′tj:l] ≥ φ

(
V t
j:l/ηt, G

′t
j:l, σ

′2) (32)

for any i, j, l.

Lemma 5 (Supermartingale Convergence Theorem [52]). Let
Yt, Zt and Wt, t = 0, 1, . . . , be three sequences of random
variables and let Ft, t = 0, 1, . . . , be sets of random variables
such that Ft ⊂ Ft+1. Suppose that
1) The random variables Yt, Zt and Wt are nonnegative, and are

functions of the random variables in Ft.
2) For each t, we have

E[Yt+1|Ft] ≤ Yt − Zt +Wt. (33)

3) There holds, with probability 1,
∑∞

t=0Wt <∞.
Then we have

∑∞
t=0 Zt <∞, and the sequence Yt converges to a

nonnegative random variable Y , with probability 1.

Lemma 6 ([53]). For two nonnegative scalar sequences {at} and
{bt}, if

∑∞
t=0 ak =∞ and

∑∞
t=0 atbt <∞, then

lim inf
t→∞

bt = 0. (34)

Furthermore, if |bt+1 − bt| ≤ B · at for some constant B > 0,
then

lim
t→∞

bt = 0. (35)

14

B.2 Proof of Theorem 1

Proof of Theorem 1. Let us first focus on projected gradient
descent. By conditioning on U t and V t, we have

f(U t+1, V t) =
∥∥∥M − U t+1V t>

∥∥∥2
F

=
∥∥∥M − (U t − ηt∆t)V t>∥∥∥2

F

=
∥∥∥(M − U tV t>)− ηt∆tV t>

∥∥∥2
F

=
∥∥∥M − U tV t>∥∥∥2

F
− 2ηt

(
M − U tV t>

)
·
(

∆tV t>
)

+ η2t ‖∆tV t>‖2F
=f(U t, V t)− 2ηt

(
M − U tV t>

)
·
(

∆tV t>
)

+ η2t ‖∆tV t>‖2F . (36)

For the second term of Eq. 36, note that

2
(
M − U tV t>

)
·
(

∆tV t>
)

= 2tr
[(
M − U tV t>

)
V t∆t>

]
= tr

[
Gt∆t>

]
=
∑
i,l

Gt
i:l ·∆t

i:l.

(37)
By taking expectation and using Lemma 4, we obtain:

E
[
2
(
M − U tV t>

)
·
(

∆tV t>
)]

=
∑
i,l

E
[
Gt

i:l ·∆t
i:l

]
≥
∑
i,l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) .
(38)

For simplicity, we will use the notation

Φ(U t/ηt, G
t) ,

∑
i,l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2) . (39)

For the third term of Eq. 36, we can bound it in the following
way:

‖∆tV t>‖2F ≤‖∆t‖2F · ‖V t‖2F ≤ ‖G̃t‖2F · ‖V t‖2F
=
∥∥∥2(U tV t> −M)(StSt>)V t

∥∥∥2
F
· ‖V t‖2F

≤4‖M − U tV t>‖2F · ‖StSt>‖2F · ‖V t‖4F
≤8
(
‖M‖2F + ‖U t‖2F · ‖V t‖2F

)
· ‖StSt>‖2F · ‖V t‖4F

≤8
(
‖M‖2F +R4

)
R4 · ‖StSt>‖2F ,

(40)
where in the last inequality we have applied Assumption 2.
If we take expectation, we have

E‖∆tV t>‖2F ≤8
(
‖M‖2F +R4)R4 · E‖StSt>‖2F

≤8
(
‖M‖2F +R4)R4 ·

(∥∥∥E[StSt>]
∥∥∥2 + V[StSt>]

)
≤8
(
‖M‖2F +R4)R4 ·

(
n+ σ2) ,

(41)
where mean-variance decomposition have been applied in
the second inequality, and Assumption 1 was used in the
last line. For convenience, we will use

Γ , 8
(
‖M‖2F +R4

)
R4 ·

(
n+ σ2

)
≥ 0 (42)

to denote this constant later on.

By combining all results, we can rewrite Eq. 36 as

E
[
f(U t+1, V t)

]
≤ f(U t, V t)−ηtΦ

(
U t/ηt, G

t
)
+η2t Γ. (43)

Likewise, conditioned on U t+1 and V t, we can prove a
similar inequality for V :

E
[
f(U t+1, V t+1)

]
≤ f(U t+1, V t)−ηtΦ

(
V t/ηt, G

′t)+η2t Γ′,
(44)

where Γ′ ≥ 0 is also some uniform constant. From defini-
tion, it is easy to see both Φ (U t/ηt, G

t) and Φ (V t/ηt, G
′t)

are nonnegative. Along with condition the condition∑∞
t=0 η

2
t < ∞, we can apply the Supermartingale Conver-

gence Theorem (Lemma 5) with

Y2t = f(U t, V t), Y2t+1 = f(U t+1, V t),

Z2t = Φ
(
U t/ηt, G

t
)
, Z2t+1 = Φ

(
V t/ηt, G

′t) ,
W2t = Γη2t , W2t+1 = Γ′η2t ,

(45)

and then conclude that both {f(U t+1, V t)} and {f(U t, V t)}
will converge to a same value, and besides:

∞∑
t=0

ηt
[
Φ
(
U t/ηt, G

t
)

+ Φ
(
V t/ηt, G

′t)] <∞, (46)

with probability 1. In addition, it is not hard to verify that∣∣Φ (U t+1/ηt+1, G
t+1
)
− Φ (U t/ηt, G

t)
∣∣ ≤ C · ηt for some

constant C because of the boundness of the gradients. Then,
by Lemma 6, we obtain that

lim
t→∞

Φ
(
U t/ηt, G

t
)

= lim
t→∞

∑
i:l

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2)→ 0.

(47)
Since each summand in the above is nonnegative, this
equation further implies

lim
t→∞

φ
(
U t
i:l/ηt, G

t
i:l, σ

′2)→ 0 (48)

for all i and l. By looking into the definition of φ in Eq. 30, it
is not hard to see that φ

(
U t
i:l/ηt, G

t
i:l, σ

′2)→ 0 if and only if
min

{
U t
i:l/ηt,

∣∣Gt
i:l

∣∣} → 0. Considering ηt > 0 and ηt → 0,
we can conclude that

lim
t→∞

min
{
U t
i:l,
∣∣Gt

i:l

∣∣}→ 0 (49)

for all i, l, which means either the gradient Gt
i:l converges

to 0, or U t
i:l converges to the boundary 0. In other words,

the projected gradient at (U t, V t) w.r.t U converges to 0 as
t→∞. Likewise, we can prove

lim
t→∞

min
{
V t
j:l,

∣∣G′tj:l∣∣}→ 0, (50)

in a similar way, which completes the proof of projected
gradient descent.

The proof of regularized coordinate descent is similar to that
of projected gradient descent, and hence we only include a
sketch proof here. The key here is to establish an inequality
similar to Eq. 36, but with the difference that just one column
rather than whole U or V is changed every time. Take
U:1 as an example. An important observation is that when
projection does not happen, we can rewrite (19) in the paper
as U t+1

:1 = U t
:1 − G̃:1/(τt + Bt

j:B
t>
j:), which means that

the moving direction of regularized coordinate descent is
the same as that of projected gradient descent, but with
step size being 1/(τt + Bt

j:B
t>
j:). Since both the expecta-

tion and variance of Bt
j:B

t>
j: are bounded, we will have

1/(τt + Bt
j:B

t>
j:) ≈ 1/τt when τt is large. Given these two

reasons, we can out down a similar inequality as Eq. 36. The
remaining proof just follows the one for projected gradient
descent.

15

B.3 Proof of Preliminary Lemmas
Proof of Lemma 2. Since the proof related to G̃′t is similar to
G̃t, here we only focus on the latter one.

First, let us write down the definition of Gt and G̃t:

Gt = 2(U tV t> −M)V t

G̃t = 2(U tV t> −M)(StSt>)V t.
(51)

Therefore,

E[G̃t] =E
[
2(U tV t> −M)(StSt>)V t

]
=2(U tV t> −M)E[StSt>]V t

=2(U tV t> −M) I V t = 2(U tV t> −M)V t = Gt,
(52)

which means G̃t is an unbiased estimator of Gt. Besides, its
variance is uniformly bounded because

V[G̃t] ≤V
[
2(U tV t> −M)i:(S

tSt>)V t
:l

]
≤4‖M − U tV t>‖2F · V[StSt>] · ‖V t‖2F
≤8
(
‖M‖2F + ‖U t‖2F ‖V t‖2F

)
· ‖V t‖2F · V[StSt>]

≤8
(
‖M‖2F +R4

)
R2 · σ2,

(53)
where both Assumptions 1 and 2 are applied in the last
line.

Proof of Lemma 3. In this proof, we will use Cantelli’s in-
equality:

Pr(X ≥ µ+ λ) ≥ 1− σ2

σ2 + λ2
∀λ < 0. (54)

When µ = 0, it is easy to see that the right-hand-side of
Eq. 29 is 0. Considering that the left-hand-side is the expec-
tation of a nonnegative random variable, Eq. 29 obviously
holds in this case.

When µ > 0 and µ ≥ 2c, by using the fact that X is
nonnegative, we have

E [min{X, c}] ≥ c · Pr(X ≥ c). (55)

Now we can apply Cantelli’s inequality to bound Pr(X ≥ c)
with λ = c− µ < c− µ/2 ≤ 0, and obtain:

E [min{X, c}] ≥ c ·
(

1− σ2

σ2 + (µ− c)2
)

≥ c ·
(

1− σ2

σ2 + (µ− µ/2)2

)
= c ·

(
1− 4σ2

4σ2 + µ2

)
,

(56)

where in the second inequality we used the fact c ≤ µ/2
again.

When µ > 0 but µ < 2c, we have:

E [min{X, c}] ≥ E [min{X,µ/2}] . (57)

Now we can apply inequality in Eq. 56 from the previous
part with c = µ/2, and thus

E [min{X, c}] ≥ E [min{X,µ/2}] ≥ µ

2
·
(

1− 4σ2

4σ2 + µ2

)
,

(58)

which completes the proof.

Proof of Lemma 4. We only focus on Gt and ∆t. We first
show that

Gt
i:l · G̃t

i:l ≥ 0 (59)

for any random matrix St. Note that

Gt
i:l = 2(U tV t> −M)i:V

t
:l

G̃t
i:l = 2(U tV t> −M)i:(S

tSt>)V t
:l .

(60)

Hence it would be sufficient if we can show that there holds
a>(StSt>)b · a>b ≥ 0 for any vectors a and b:

a>(StSt>)b · a>b = tr
(
a>(StSt>)bb>a

)
= tr

(
aa>(StSt>)bb>

)
≥ 0,

(61)

where the first equality is because A · B = tr(AB>),
the second equality is due to cyclic permutation invariant
property of trace, and the last inequality is because all of
aa>, bb> and StSt> are positive semi-definite matrices.

Now, let us consider the relationship between ∆t and G̃t:

∆t =
1

ηt

(
U t − U t+1

)
=

1

ηt

(
U t −max

{
U t − ηtG̃t, 0

})
,

(62)
from which it can be shown that

∆t
i:l = min

{
U t
i:l/ηt, G̃

t
i:l

}
. (63)

When Gt
i:l = 0, it is easy to see that both sides of Eq.31

become 0, and hence Eq.31 holds.

WhenGt
i:l > 0, from Eq.59 we know that G̃t

i:l ≥ 0 regardless
of the choice of St. From Lemma 2 we know that

E[G̃t
i:l] = Gt

i:l (64)

and there exists a constant σ′2 ≥ 0 such that

V[G̃t
i:l] ≤ σ′2. (65)

Since U t
i:l is a nonnegative constant here, we can apply

Lemma 3 to Eq.63 and conclude

E[∆t
i:l] ≥min

{
U t
i:l/ηt, G

t
i:l/2

}
·
(

1− 4V[G̃t
i:l]

4V[G̃t
i:l] +

(
Gt

i:l

)2
)

≥min
{
U t
i:l/ηt, G

t
i:l/2

}
·
(

1− 4σ′2

4σ′2 +
(
Gt

i:l

)2
)
,

(66)
from which Eq.31 is obvious.

When Gt
i:l < 0, also from Eq. 59 we know that G̃t

i:l ≤ 0.
Since U t

i:l is a nonnegative constant here, we always have

∆t
i:l = min

{
U t
i:l/ηt, G̃

t
i:l

}
= G̃t

i:l. (67)

Therefore, by taking expectation and using Lemma 2, we
obtain

E[∆t
i:l] = E[G̃t

i:l] = Gt
i:l, (68)

and thus

E
[
Gt

i:l ·∆t
i:l

]
=
(
Gt

i:l

)2
>

(
Gt

i:l

)2
2

·
(

1− 4σ′2

4σ′2 +
(
Gt

i:l

)2
)

(69)
for any constant σ′, which means that Eq. 31 holds.

16

REFERENCES

[1] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plem-
mons, “Text mining using non-negative matrix factor-
izations,” in SDM, 2004, pp. 452–456.

[2] I. Kotsia, S. Zafeiriou, and I. Pitas, “A novel dis-
criminant non-negative matrix factorization algorithm
with applications to facial image characterization prob-
lems,” IEEE Trans. Information Forensics and Security,
vol. 2, no. 3-2, pp. 588–595, 2007.

[3] Q. Gu, J. Zhou, and C. H. Q. Ding, “Collaborative
filtering: Weighted nonnegative matrix factorization
incorporating user and item graphs,” in SDM, 2010,
pp. 199–210.

[4] Y. Zhang and D. Yeung, “Overlapping commu-
nity detection via bounded nonnegative matrix tri-
factorization,” in KDD, 2012, pp. 606–614.

[5] R. Kannan, G. Ballard, and H. Park, “A high-
performance parallel algorithm for nonnegative matrix
factorization,” in PPOPP, 2016, pp. 9:1–9:11.

[6] Y. Kim, J. Sun, H. Yu, and X. Jiang, “Federated tensor
factorization for computational phenotyping,” in KDD,
2017, pp. 887–895.

[7] J. Feng, L. T. Yang, Q. Zhu, and K.-K. R. Choo, “Privacy-
preserving tensor decomposition over encrypted data
in a federated cloud environment,” IEEE Trans. Depend-
able Sec. Comput., 2018.

[8] R. Kannan, G. Ballard, and H. Park, “MPI-FAUN: an
mpi-based framework for alternating-updating non-
negative matrix factorization,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 3, pp. 544–558, 2018.

[9] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” in NIPS, 2000, pp. 556–
562.

[10] N. Gillis, “The why and how of nonnegative matrix
factorization,” arXiv Preprint, 2014. [Online]. Available:
https://arxiv.org/abs/1401.5226

[11] M. E. Daube-Witherspoon and G. Muehllehner, “An
iterative image space reconstruction algorthm suitable
for volume ect,” IEEE Trans. Med. Imaging, vol. 5, no. 2,
pp. 61–66, 1986.

[12] L. Grippo and M. Sciandrone, “On the convergence of
the block nonlinear gauss-seidel method under convex
constraints,” Oper. Res. Lett., vol. 26, no. 3, pp. 127–136,
2000.

[13] H. Kim and H. Park, “Nonnegative matrix factorization
based on alternating nonnegativity constrained least
squares and active set method,” SIAM J. Matrix Analysis
Applications, vol. 30, no. 2, pp. 713–730, 2008.

[14] J. Kim and H. Park, “Fast nonnegative matrix factor-
ization: An active-set-like method and comparisons,”
SIAM J. Scientific Computing, vol. 33, no. 6, pp. 3261–
3281, 2011.

[15] C. Lin, “Projected gradient methods for nonnega-
tive matrix factorization,” Neural Computation, vol. 19,
no. 10, pp. 2756–2779, 2007.

[16] R. Zdunek and A. Cichocki, “Non-negative matrix fac-
torization with quasi-newton optimization,” in ICAISC,
vol. 4029, 2006, pp. 870–879.

[17] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Nenmf: An
optimal gradient method for nonnegative matrix fac-

torization,” IEEE Trans. Signal Processing, vol. 60, no. 6,
pp. 2882–2898, 2012.

[18] M. Naor and K. Nissim, “Communication preserving
protocols for secure function evaluation,” in STOC,
2001, pp. 590–599.

[19] K. Kanjani, “Parallel non negative matrix factorization
for document clustering,” CPSC-659 (Parallel and Dis-
tributed Numerical Algorithms) course. Texas A&M Uni-
versity, Tech. Rep, 2007.

[20] S. A. Robila and L. G. Maciak, “A parallel unmixing al-
gorithm for hyperspectral images,” in Intelligent Robots
and Computer Vision XXIV: Algorithms, Techniques, and
Active Vision, vol. 6384, 2006, p. 63840F.

[21] C. Liu, H. Yang, J. Fan, L. He, and Y. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic
data analysis on mapreduce,” in WWW, 2010, pp. 681–
690.

[22] R. Liao, Y. Zhang, J. Guan, and S. Zhou, “Cloudnmf: A
mapreduce implementation of nonnegative matrix fac-
torization for large-scale biological datasets,” Genomics,
Proteomics & Bioinformatics, vol. 12, no. 1, pp. 48–51,
2014.

[23] J. Yin, L. Gao, and Z. M. Zhang, “Scalable nonneg-
ative matrix factorization with block-wise updates,”
in ECML/PKDD (3), ser. Lecture Notes in Computer
Science, vol. 8726, 2014, pp. 337–352.

[24] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks,
S. Venkataraman, D. Liu, J. Freeman, D. B. Tsai,
M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Ma-
chine learning in apache spark,” J. Mach. Learn. Res.,
vol. 17, pp. 34:1–34:7, 2016.

[25] D. Grove, J. Milthorpe, and O. Tardieu, “Supporting
array programming in X10,” in ARRAY@PLDI, 2014,
pp. 38–43.

[26] E. Mejı́a-Roa, D. Tabas-Madrid, J. Setoain, C. Garcı́a,
F. Tirado, and A. D. Pascual-Montano, “Nmf-mgpu:
non-negative matrix factorization on multi-gpu sys-
tems,” BMC Bioinformatics, vol. 16, pp. 43:1–43:12, 2015.

[27] R. M. Gower and P. Richtárik, “Randomized iterative
methods for linear systems,” SIAM J. Matrix Analysis
Applications, vol. 36, no. 4, pp. 1660–1690, 2015.

[28] M. Pilanci and M. J. Wainwright, “Iterative hessian
sketch: Fast and accurate solution approximation for
constrained least-squares,” J. Mach. Learn. Res., vol. 17,
pp. 53:1–53:38, 2016.

[29] M. Pilanci and M. J. Wainwright, “Newton sketch: A
near linear-time optimization algorithm with linear-
quadratic convergence,” SIAM Journal on Optimization,
vol. 27, no. 1, pp. 205–245, 2017.

[30] F. Wang and P. Li, “Efficient nonnegative matrix fac-
torization with random projections,” in SDM, 2010, pp.
281–292.

[31] Y. Lindell and B. Pinkas, “Privacy preserving data
mining,” in CRYPTO, vol. 1880, 2000, pp. 36–54.

[32] L. Wan, W. K. Ng, S. Han, and V. C. S. Lee, “Privacy-
preservation for gradient descent methods,” in KDD,
2007, pp. 775–783.

[33] S. Han, W. K. Ng, L. Wan, and V. C. S. Lee, “Privacy-
preserving gradient-descent methods,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 6, pp. 884–899, 2010.

https://arxiv.org/abs/1401.5226

17

[34] M. A. Pathak and B. Raj, “Privacy preserving protocols
for eigenvector computation,” in PSDML, vol. 6549,
2010, pp. 113–126.

[35] S. Han, W. K. Ng, and P. S. Yu, “Privacy-preserving sin-
gular value decomposition,” in ICDE, 2009, pp. 1267–
1270.

[36] S. Chen, R. Lu, and J. Zhang, “A flexible privacy-
preserving framework for singular value decomposi-
tion under internet of things environment,” in IFIPTM,
vol. 505, 2017, pp. 21–37.

[37] J. Sakuma and S. Kobayashi, “Large-scale k-means clus-
tering with user-centric privacy-preservation,” Knowl.
Inf. Syst., vol. 25, no. 2, pp. 253–279, 2010.

[38] Z. Lin and J. W. Jaromczyk, “Privacy preserving spec-
tral clustering over vertically partitioned data sets,” in
FSKD, 2011, pp. 1206–1211.

[39] Y. Duan and J. F. Canny, “Practical private computa-
tion and zero-knowledge tools for privacy-preserving
distributed data mining,” in SDM. SIAM, 2008, pp.
265–276.

[40] Z. Beerliová-Trubı́niová and M. Hirt, “Perfectly-secure
MPC with linear communication complexity,” in TCC,
vol. 4948, 2008, pp. 213–230.

[41] I. Damgård and J. B. Nielsen, “Scalable and uncondi-
tionally secure multiparty computation,” in CRYPTO,
vol. 4622, 2007, pp. 572–590.

[42] N. Ailon and B. Chazelle, “Approximate nearest neigh-
bors and the fast johnson-lindenstrauss transform,” in
STOC, 2006, pp. 557–563.

[43] Y. Lu, P. S. Dhillon, D. P. Foster, and L. H. Ungar,
“Faster ridge regression via the subsampled random-
ized hadamard transform,” in NIPS, 2013, pp. 369–377.

[44] K. L. Clarkson and D. P. Woodruff, “Low rank approxi-
mation and regression in input sparsity time,” in STOC,
2013, pp. 81–90.

[45] N. Pham and R. Pagh, “Fast and scalable polynomial
kernels via explicit feature maps,” in KDD, 2013, pp.
239–247.

[46] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro,
“Robust stochastic approximation approach to stochas-
tic programming,” SIAM J. on Optim., vol. 19, no. 4, pp.
1574–1609, 2009.

[47] R. T. Rockafellar, “Monotone operators and the proxi-
mal point algorithm,” SIAM J. Control Optim., vol. 14,
no. 5, pp. 877–898, 1976.

[48] J. P. Fairbanks, R. Kannan, H. Park, and D. A. Bader,
“Behavioral clusters in dynamic graphs,” Parallel Com-
puting, vol. 47, pp. 38–50, 2015.

[49] Y. Qian, C. Tan, N. Mamoulis, and D. W. Cheung,
“DSANLS: accelerating distributed nonnegative matrix
factorization via sketching,” in WSDM, 2018, pp. 450–
458.

[50] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient
methods,” Stanford University, 2003. [Online].
Available: https://web.stanford.edu/class/ee392o/
subgrad method.pdf

[51] J. Kim, Y. He, and H. Park, “Algorithms for non-
negative matrix and tensor factorizations: a unified
view based on block coordinate descent framework,”
J. Global Optimization, vol. 58, no. 2, pp. 285–319, 2014.

[52] J. Neveu, Discrete-parameter martingales. Elsevier, 1975,

vol. 10.
[53] J. Mairal, “Stochastic majorization-minimization algo-

rithms for large-scale optimization,” in NIPS, 2013, pp.
2283–2291.

Yuqiu Qian is currently an applied researcher
in Tencent. Her research interests include data
engineering and machine learning with applica-
tions in recommender systems. She received
her B.Eng. degree in Computer Science from
University of Science and Technology of China
(2015), and her PhD degree in Computer Sci-
ence from University of Hong Kong (2019).

Conghui Tan is currently a researcher in We-
Bank. His research interests include machine
learning and optimization algorithms. He re-
ceived his B.Eng. degree in Computer Science
from University of Science and Technology of
China (2015), and his PhD degree in System
Engineering from Chinese University of Hong
Kong (2019).

Danhao Ding is currently a PhD candidate in
Department of Computer Science, University of
Hong Kong. His research interest include high
performance computing and machine learning.
He received his B.Eng. degree in Computing
and Data Analytics from University of Hong Kong
(2016).

Hui Li is currently an assistant professor in the
School of Informatics, Xiamen University. His re-
search interests include data mining and data
management with applications in recommender
systems and knowledge graph. He received his
B.Eng. degree in Software Engineering from
Central South University (2012), and his MPhil
and PhD degrees in Computer Science from
University of Hong Kong (2015, 2018).

Nikos Mamoulis received his diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and his PhD
in computer science in 2000 from HKUST. He
is currently a faculty member at the University
of Ioannina. Before, he was professor at the
Department of Computer Science, University of
Hong Kong. His research focuses on the man-
agement and mining of complex data types.

https://web.stanford.edu/class/ee392o/subgrad_method.pdf
https://web.stanford.edu/class/ee392o/subgrad_method.pdf

	Introduction
	Background and Related Work
	Preliminary
	NMF Algorithms
	Secure Distributed NMF

	Related Work
	Accelerating NMF
	Matrix Sketching
	Secure Matrix Computation on Federated Data

	DSANLS: Distributed Sketched ANLS
	Data Partitioning
	SANLS: Sketched ANLS
	DSANLS: Distributed SANLS
	Generation of Random Matrices
	Solving Subproblems
	Projected Gradient Descent
	Proximal Coordinate Descent

	Theoretical Analysis
	Complexity Analysis
	Convergence Analysis

	Secure Distributed NMF
	Extend DSANLS to Secure Setting
	Synchronous Framework
	Asynchronous Framework

	Experimental Evaluation
	Setup
	Evaluation on Accelerating General NMF
	Performance Comparison
	Scalability Comparison
	Performance Varying the Value of k
	Comparison with Projected Gradient Descent

	Evaluation on Secure Distributed NMF
	Performance Comparison for Uniform Workload
	Performance Comparison for Imbalanced Workload
	Scalability Comparison

	Conclusion
	Acknowledgment
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	Preliminary Lemmas
	Proof of Theorem 1
	Proof of Preliminary Lemmas

	Biographies
	Yuqiu Qian
	Conghui Tan
	Danhao Ding
	Hui Li
	Nikos Mamoulis

